
Comments on using the nothon notebook

Zoltán Vörös

Sat Apr 13 2013 09:13:22 GMT+0200 (CEST)

1 Beginning with nothon

The most recent version of the source code resides at https://github.com/v923z/nothon
After starting nothon.py, the notebook can be accessed at address
http://127.0.0.1:8080/?name=somenotebook.note
If the notebook exists (this should be a JSON file), then its content will be rendered in the browser. If it

doesn’t exist, then a new notebook with that name will be created. When saving this notebook, its content will
be written to disc under the name somenotebook.note.

Once in the browser, a new div can be added by clicking on the appropriate label under the + sign on the
right hand side. The active div’s parent (always indicated by a thick right-hand-side border) can be removed
by clicking on remove. This operation moves the divide to the trash, which is part of the document, but is
hidden. (The trash can be made visible by clicking on the trashbin icon on the lower right corner.) By clicking
on recover, either the active block of the trashbin, or if that does not exist, then the last block in the trash is
restored to the visible part of the document, and is inserted as the last divide. Blocks of the document can be
moved up or down by clicking on the up or down arrow on the right hand side.

2 Usage in general terms

Headers in text, code, and head blocks are evaluated by pressing ‘Enter‘. This moves the cursor to the body of
a text header, or send a request to the server to execute and return the output of the corresponding handler
function.

Units can be ”executed” by pressing ‘Cntr+Enter‘. This will render mathematical formulae in a text block,
or execute a plot. If ‘Shift+Enter‘ is pressed, a new block of the same type is also inserted into the notebook.

3 Customisation

The visual appearance of a notebook can be influenced by changing the appropriate parameters in the cascaded
style sheet. These modifications do not change the behaviour of the server or the client.

Several aspects of the behaviour of the server can be customised in a resource file. (In future versions, this
will be extended to the client, too.) By default, only png files are created, when the user plots in the notebook.
By changing the value of the variable self.plot pdf output to True, the plotting backend will generate pdf output,
too. This output can later be included in latex files.

The ordering of the directory tree can be customised. By default, the server sends the tree ordered linux
style, i.e., in each folder, the files are listed first, and then the folders. By setting the variable self.dirlisting style
to ”windows”, folders will be shown first, and then files.

When working with code (see below), it might be useful to include only a function or a segment of a code file.
This can be done by defining a start and end tag in the source code, and supplying that to the code handler.

1

In order for the code highlighter to know what amounts to the beginning/ending of a code segment, the tag is
prepended and appended with a beginning/closing string. This can be defined in the variable self.code delimiter.
E.g., if self.code delimiter = (’*-’, ’-*’), then the code should be enclosed between the tags

- some tag code some tag -
The user can define arbitrary tag combination.

4 Code segments 1.

Arbitrary code residing on the hard disc can conveniently be displayed. All one has to do is give the file name
in a code cell.

helper.py
Created: Fri Mar 22 21:05:47 2013, modified: Fri Mar 22 21:05:47 2013

import os

def retreive_header(args):

head = args.split(’
’)

sp = head[0].split(’ ’)

if not os.path.exists(sp[0]):

return "File doesn’t exist"

if len(sp) == 1: n = 10

TODO: elif sp[1] == ’#’:

else: n = int(sp[1])

fin = open(sp[0], ’r’)

*- function_something

if n > 0:

lines = []

it = 0

for line in fin:

lines.append(line.rstrip(’\n\r’))

it += 1

if it >= n: break

function_something -*

if n < 0:

lines = fin.readlines()

lines = lines[-10:]

fin.close()

return ’
’.join([x.rstrip(’\n\r’) for x in lines])

5 Working with code 2.

Code lines can be numbered by adding -lineno on the command line. In addition, if a start and end tag are
defined in the source file, the code highlighter can be made to display only the segment between the two strings.
If -include is specified on the command line, the tags are also included in the highlit code. This can be useful
when one wants to emphasise that we are dealing with a code segment only.

2

helper.py -lineno -tag function something -include
Created: Fri Mar 22 21:05:47 2013, modified: Fri Mar 22 21:05:47 2013

1 # *- function_something

2 if n > 0:

3 lines = []

4 it = 0

5 for line in fin:

6 lines.append(line.rstrip(’\n\r’))

7 it += 1

8 if it >= n: break

9 # function_something -*

6 Working with headers 1.

This functionality might be handy, if one wants to list the content of some file. We only have to enter the file
name, and press enter. Additionally, an argument can be supplied, in which case, only the first or last n lines
will be printed.

test.dat
Created: Sat Dec 15 23:54:22 2012, modified: Sat Dec 15 23:53:33 2012

comment 1

comment 2

12 3

23 22

2132 123

55 99

7 Working with headers 2.

If we supply an argument, we can print the first or last n lines as follows

test.dat 2
Created: Sat Dec 15 23:54:22 2012, modified: Sat Dec 15 23:53:33 2012

comment 1

comment 2

test.dat -2
Created: Sat Dec 15 23:54:22 2012, modified: Sat Dec 15 23:53:33 2012

2132 123

55 99

3

8 Adding plots

Plots can easily be included in a notebook. A plot cell has three usable subcells. The first one is the caption/title
of the plot. This will be included in the table of contents, and this will also be used as the caption, when one
converts the notebook to pdf via LaTeX.

The second cell is the matplotlib code that generates the plot. At the time of writing this, this code is going
to be included in the pdf output, while in the notebook, it can be made hidden by clicking on the gray area
next to it.

The third subcell is the plot itself. In case the plot cannot be generated (e.g., due to a syntax error in the
code), the traceback will be returned instead.

Note that gnuplot also can be used as the plotting backend by adding #gnuplot or # gnuplot on the first
line of the code.

plot(sin(x), ’ro’)

xlabel(’Time [s]’)

ylabel(’Displacement [a.u.]’)

0 20 40 60 80 100
Time [s]

1.0

0.5

0.0

0.5

1.0

D
is

p
la

ce
m

e
n
t

[a
.u

.]

Figure 1: Time evolution of the displacement of a harmonic oscillator

9

10

11 This is a text box with some LaTeX code

In addition to containing raw text, courtesy of MathJaX, a text box can also deal with LaTeX code. This can be
inserted by pressing Cntr-Alt-M (display style), or Alt-M (inline). If we wanted to solve the quadratic equation

a · x2 + b · x + c = 0

4

then you would have to look up the solution formula,

x1,2 =
−b±

√
b2 − 4ac

2a

Some markup can be added to text. Cntr-I is going to make the text italic, Cntr-B turns it boldface,
Cntr-O adds highlighting , while Cntr-U will underline the text.

Notebooks can be converted to pdf via LaTeX by calling python/latex.py with the notebook file as the single
argument. Customisation of the latex file should be done through the templates in templates/. If pdf output is
needed, self.plot pdf output has to be set to True in the resource file.

a = 123 (1)

b = 122 (2)

5

	Beginning with nothon
	Usage in general terms
	Customisation
	Code segments 1.
	Working with code 2.
	Working with headers 1.
	Working with headers 2.
	Adding plots
	
	
	This is a text box with some LaTeX code

