<div dir="ltr"><div>I think it has to do with the conventions used by PIL way back in the day. To me, the current conventions make sense to me because imshow can work with just a simple 2D image. Color is then additional dimensions (and thus at the end). If I slice up an image like so: `im[20:40, 50:80]`, then imshow will work as expected regardless if that image was a 2D grayscale image or a 3D RGB[A] image.<br><br></div><div>Cheers!<br></div>Ben Root<br></div><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Aug 5, 2015 at 4:02 AM, Fabien <span dir="ltr"><<a href="mailto:fabien.maussion@gmail.com" target="_blank">fabien.maussion@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi all,<br>
<br>
just to follow up a quite intense discussion on the numpy mailing list about dimensions ordering: why are matplotlib RGB images of dimensions (row, column, plane) instead of the standard (plane, row, column)?<br>
<br>
I guess this has been asked thousand times but I can't seem to find the answer...<br>
<br>
Thanks!<br>
<br>
Fabien<br>
<br>
_______________________________________________<br>
Matplotlib-users mailing list<br>
<a href="mailto:Matplotlib-users@python.org" target="_blank">Matplotlib-users@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/matplotlib-users" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/matplotlib-users</a><br>
</blockquote></div><br></div>