<br><br><div class="gmail_quote">On Thu, Jun 13, 2013 at 8:56 AM, Aron Ahmadia <span dir="ltr"><<a href="mailto:aron@ahmadia.net" target="_blank">aron@ahmadia.net</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div dir="ltr">Hi Petro,<div><br></div><div>What version of numpy are you running?</div><span class="HOEnZb"><font color="#888888"><div><br></div><div>A</div></font></span></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra">
<br><br><div class="gmail_quote">On Thu, Jun 13, 2013 at 3:50 PM, Pietro Bonfa' <span dir="ltr"><<a href="mailto:pietro.bonfa@fis.unipr.it" target="_blank">pietro.bonfa@fis.unipr.it</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Numpy users,<br>
<br>
I have a memory leak in my code. A simple way to reproduce my problem is:<br>
<br>
import numpy<br>
<br>
class test():<br>
def __init__(self):<br>
pass<br>
<br>
def t(self):<br>
temp = numpy.zeros([200,100,100])<br>
A = numpy.zeros([200], dtype = numpy.float)<br>
for i in range(200):<br>
A[i] = numpy.sum( temp[i].diagonal() )<br>
<br>
return A<br>
<br>
a = test()<br>
c = [a.t() for i in range(100)]<br>
<br>
Running this script will require 1.5 Gb of memory since the 16 mb of<br>
temp arrays are never deallocated.<br>
<br>
How can I solve this problem?<br>
<br>
Thanks in advances,<br>
Pietro Bonfa'<br>
<br>
<br>
P.S: I asked the same question also on stack overflow<br>
(<a href="http://stackoverflow.com/questions/17085197/is-this-a-memory-leak-python-numpy" target="_blank">http://stackoverflow.com/questions/17085197/is-this-a-memory-leak-python-numpy</a><br>
)<br>
<span><font color="#888888"><br></font></span></blockquote></div></div></div></div></blockquote><div><br>IIRC, there was a memory leak with diagonal in 1.7.0 that was fixed in 1.7.1.<br><br>Chuck <br></div></div>