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Data processing

measurements 
from a sensor

clicking on ads

average value in 
the last minute

total clicks on a 
day



Batch
Finite chunk of data
Operations defined over the entire input

Data processing: Batch or stream

8



Batch
Finite chunk of data
Operations defined over the entire input

Stream
Unbounded stream of events flowing in
Events are processed continuously 
(possibly with state) 

Data processing: Batch or stream

9



Why stream processing over batch?
● Lower latency on results
● Most data is unbounded, so streaming model is more 

flexible
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Example problem: ad campaign metrics

Ad Yelp



ad {
  id: 1200834,
  campaign_id: 2001,
  user_id: 9zkjacn81m,
  timestamp: 1490732147
}

view {
  id: 1200834,
  timestamp: 1490732150
}

click {
  id: 1200834,
  timestamp: 1490732168
}



Metrics (views, clicks) for each 
campaign over time

Ad Yelp
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Stream processing pipelines

Stream 
processing 

engine
Storage
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Source of 

streaming data



Types of operations
1. Ingestion
2. Stateless transforms
3. Stateful transforms
4. Keyed stateful transforms
5. Publishing



Operations: 1. Ingestion

Kafka
Reader Operation

Source



Operations: 1. Ingestion

Kafka
Reader Operation

Source
from pyspark.streaming.kafka import KafkaUtils

ad_stream = KafkaUtils.createDirectStream(
  streaming_context,
  topics=[‘ad_events’],
  kafkaParams={...},
)



Operations: 2. Stateless transforms

Operation Transform Operation



Operations: 2a. Stateless transforms

Filter

e.g., filtering



Operations: 2a. Stateless transforms

Filter

e.g., filtering

def is_not_from_bot(event):
  return event[‘ip’] not in bot_ips  

filtered_stream = ad_stream.filter(is_not_from_bot)



Operations: 2b. Stateless transforms

Project

e.g., projection



Operations: 2b. Stateless transforms

Project

e.g., projection

desired_fields = [‘ad_id’, ‘campaign_id’]

def trim_event(event):
  return {key: event[key] for key in desired_fields}

projected_stream = ad_stream.map(trim_event)



Operations: 3. Stateful transforms
On windows of data

Transform

Sliding window



Operations: 3. Stateful transforms
On windows of data

Transform

Sliding window

Tumbling window



Operations: 3. Stateful transforms
e.g., aggregation

Sum 5 60 1 1 3 0 1 2



Operations: 3. Stateful transforms
e.g., aggregation

Sum 5 60 1 1 3 0 1 2

aggregated_stream = event_stream.reduceByWindow(
  func=operator.add,
  windowLength=4,
  slideInterval=3,
)



Operations: 4. Keyed stateful transforms

Shuffle

Group events by key (shuffle) within each window before 
transform

Transform



Operations: 4a. Keyed stateful transforms

c_id: 1

views: 1

c_id: 2

views: 2

c_id: 1

views: 1

c_id: 2

views: 1

c_id: 2

views: 1

sum 
views 

by c_id

e.g., aggregate views by campaign_id



Operations: 4a. Keyed stateful transforms
e.g., aggregate views by campaign_id

aggregated_views = view_stream.reduceByKeyAndWindow(
  func=operator.add,
  windowLength=3,
  slideInterval=3,
)

c_id: 1

views: 1

c_id: 2

views: 2

c_id: 1

views: 1

c_id: 2

views: 1

c_id: 2

views: 1

sum 
views 

by c_id



Operations: 4b. Keyed stateful transforms
Can also be on more than one stream, e.g., join by id

Shuffle Join



Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

Join by 
ad_id

Ad
ad_id: 11

c_id: 1

ad_id: 22

c_id: 2

ad_id: 22

time: 5

ad_id: 11

time: 7

ad_id: 11
ad: {
  c_id: 1
},
view: {
  time: 7
} 

ad_id: 22
ad: {
  c_id: 2
},
view: {
  time: 5
} 



Operations: 4b. Keyed stateful transforms

windowed_ad_stream = ad_stream.window(
  windowLength=2,
  slideInterval=2,
)
windowed_view_stream = view_stream.window(
  windowLength=2,
  slideInterval=2,
)
joined_stream = windowed_ad_stream.join(
  windowed_view_stream,
)

e.g., join by ad_id



Operations: 5. Publishing

Sink

File
writerOperation



Operations: 5. Publishing

results_stream.saveAsTextFiles(‘s3://my.bucket/results/’)

File
writerOperation

Sink



Operations: Summary
1. Ingestion
2. Stateless transforms: on single events

a. Filtering
b. Projections

3. Stateful transforms: on windows of events
4. Keyed stateful transforms

a. On single streams, transform by key
b. Join events from several streams by key

5. Publishing



Putting it together: campaign metrics

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project



read

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ip: bot_id,
  ...
}
{
  ip: OK_id,
  ...
}



filter

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ip: bot_id,
  ...
}
{
  ip: OK_id,
  ...
}



project

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ip: OK_id,
  scoring: {
    ...
  },
  ...
}



project

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ip: OK_id,
  scoring: {
    ...
  },
  ...
}



join by ad id

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ad_id: 1,
  ad_data: ...
}
{
  ad_id: 1,
  view_data: ...
}



join by ad id

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ad_id: 1,
  ad_data: ...,
  view_data: ...,
}



transform

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ad_id: 1,
  campaign_id: 7,
  view: true,
  click: false
}



sum by campaign

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  ad_id: 1,
  campaign_id: 7,
  view: true,
  click: false
}
{
  ad_id: 23,
  campaign_id: 7,
  view: true,
  click: false
}



sum by campaign

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

{
  campaign_id: 7,
  views: 2,
  clicks: 0
}



write db.write(
  campaign_id=7,
  views=2,
  clicks=0,
)

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project



Ad campaign metrics pipeline

Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project
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Horizontal scalability: Basic idea
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Horizontal scalability: Basic idea



Horizontal scalability: Why?



Horizontal scalability: Why?



Horizontal scalability: How?

Random 
partitioning

Partitioning



Horizontal scalability: How?

Ad

read

read

read

filter

filter

filter

project

project

project

read

read

read

filter

filter

filter

project

project

project

Partitioning

Random 
partitioning



project

project

project

join by ad id

Horizontal scalability: How?

Partitioning



project

project

project

join by ad id

Horizontal scalability: How?

Partitioning

Keyed partitioning



Horizontal scalability: watch out!

Hot spots / data skew

transform

sum by 
campaign

transform



Horizontal scalability: watch out!

Hot spots / data skew

Keyed partitioning

transform

sum by 
campaign

transform



Horizontal scalability: Summary
● Random partitioning for stateless transforms

● Keyed partitioning for keyed transformations

● Watch out for hot spots, and use appropriate 
mitigation strategy
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Idempotency



Idempotency
An idempotent operation can be 
applied more than once and have 
the same effect.



Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project



Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

project

write



What operations are idempotent?

Transforms: filters, projections, etc
No side effects!

Stateful operations



Ad filterread join by 
ad id

transform

write

sum by 
campaign

project

transform

write

filterread project

filterread project

project

write



Idempotent writes with unique keys

campaign_id = 7, 
minute = 20, 
views = 2

campaign
_id

minute views

7 20 2campaign_id = 7, 
minute = 20, 
views = 2



Writes that aren’t idempotent

campaign
_id

hour views

7 2 0



Writes that aren’t idempotent

campaign_id = 7,
hour = 2,
views += 1

campaign
_id

hour views

7 2 1



Writes that aren’t idempotent

campaign_id = 7,
hour = 2,
views += 1

campaign
_id

hour views

7 2 2campaign_id = 7,
hour = 2,
views += 1



Support for idempotency

campaign_id = 7,
hour = 2,
views += 1,
version = 1 campaign

_id
hour views

7 2 1campaign_id = 7,
hour = 2,
views += 1
version = 1



Idempotency in streaming pipelines
Both in output to data sink and in local state (joining, 
aggregation)

Re-processing of events
- Some frameworks provide exactly once guarantees



Consistency vs. availability



Always a tradeoff between 
consistency and availability 
when handling failures



Consistency
Every read sees a current view of the data.

Availability
Capacity to serve requests



A = 9 A = 9



A = 3 A = 3

A = 3

A = 3



A = 9 A = 9



A = 9 A = 9

Consistency > availability

A = 3

A = 3



A = 9 A = 9

Consistency > availability A = 3

Error: write 
unavailable 



A = 9 A = 9

Availability > consistency

A = 3

A = 3



A = 9 A = 3

Availability > consistency

Not consistent: 
3 != 9



Prioritizing consistency or availability
Applies to systems for both your data source and data 
sink

Source

Stream 
processing 

engine

Data sink

Storage



Prioritizing consistency or availability
Applies to systems for both your data source and data 
sink
● Some systems pick one, be aware
● Others let you choose

○ ex. Cassandra - how many replicas respond to 
write?

Streaming applications run continuously



Prioritizing consistency or availability
Depends on the needs of your application

Metrics (views, 
clicks) for each 
campaign over time



Prioritizing consistency or availability
More consistency

Metrics (views, 
clicks) for each 
campaign over time



Prioritizing consistency or availability
More availability

Internal graphs
Metrics (views, 
clicks) for each 
campaign over time



Conclusion
● Stream processing: data processing with operations on 

events or windows of events
● Horizontal scalability, as data will grow and change over 

time
● Handle failures appropriately

○ Keep operations idempotent, for retries
○ Tradeoff between availability and consistency



www.yelp.com/careers/
We're Hiring!



@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp


