<div dir="ltr">Hi,<div><br></div><div>Is a new EC type really needed? Cannot this be done with collections.ChainMap?</div></div><div class="gmail_extra"><br><div class="gmail_quote">2017-08-12 0:37 GMT+02:00 Yury Selivanov <span dir="ltr"><<a href="mailto:yselivanov.ml@gmail.com" target="_blank">yselivanov.ml@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi,<br>
<br>
This is a new PEP to implement Execution Contexts in Python.<br>
<br>
The PEP is in-flight to <a href="http://python.org" rel="noreferrer" target="_blank">python.org</a>, and in the meanwhile can<br>
be read on GitHub:<br>
<br>
<a href="https://github.com/python/peps/blob/master/pep-0550.rst" rel="noreferrer" target="_blank">https://github.com/python/<wbr>peps/blob/master/pep-0550.rst</a><br>
<br>
(it contains a few diagrams and charts, so please read it there.)<br>
<br>
Thank you!<br>
Yury<br>
<br>
<br>
PEP: 550<br>
Title: Execution Context<br>
Version: $Revision$<br>
Last-Modified: $Date$<br>
Author: Yury Selivanov <<a href="mailto:yury@magic.io">yury@magic.io</a>><br>
Status: Draft<br>
Type: Standards Track<br>
Content-Type: text/x-rst<br>
Created: 11-Aug-2017<br>
Python-Version: 3.7<br>
Post-History: 11-Aug-2017<br>
<br>
<br>
Abstract<br>
========<br>
<br>
This PEP proposes a new mechanism to manage execution state--the<br>
logical environment in which a function, a thread, a generator,<br>
or a coroutine executes in.<br>
<br>
A few examples of where having a reliable state storage is required:<br>
<br>
* Context managers like decimal contexts, ``numpy.errstate``,<br>
  and ``warnings.catch_warnings``;<br>
<br>
* Storing request-related data such as security tokens and request<br>
  data in web applications;<br>
<br>
* Profiling, tracing, and logging in complex and large code bases.<br>
<br>
The usual solution for storing state is to use a Thread-local Storage<br>
(TLS), implemented in the standard library as ``threading.local()``.<br>
Unfortunately, TLS does not work for isolating state of generators or<br>
asynchronous code because such code shares a single thread.<br>
<br>
<br>
Rationale<br>
=========<br>
<br>
Traditionally a Thread-local Storage (TLS) is used for storing the<br>
state.  However, the major flaw of using the TLS is that it works only<br>
for multi-threaded code.  It is not possible to reliably contain the<br>
state within a generator or a coroutine.  For example, consider<br>
the following generator::<br>
<br>
    def calculate(precision, ...):<br>
        with decimal.localcontext() as ctx:<br>
            # Set the precision for decimal calculations<br>
            # inside this block<br>
            ctx.prec = precision<br>
<br>
            yield calculate_something()<br>
            yield calculate_something_else()<br>
<br>
Decimal context is using a TLS to store the state, and because TLS is<br>
not aware of generators, the state can leak.  The above code will<br>
not work correctly, if a user iterates over the ``calculate()``<br>
generator with different precisions in parallel::<br>
<br>
    g1 = calculate(100)<br>
    g2 = calculate(50)<br>
<br>
    items = list(zip(g1, g2))<br>
<br>
    # items[0] will be a tuple of:<br>
    #   first value from g1 calculated with 100 precision,<br>
    #   first value from g2 calculated with 50 precision.<br>
    #<br>
    # items[1] will be a tuple of:<br>
    #   second value from g1 calculated with 50 precision,<br>
    #   second value from g2 calculated with 50 precision.<br>
<br>
An even scarier example would be using decimals to represent money<br>
in an async/await application: decimal calculations can suddenly<br>
lose precision in the middle of processing a request.  Currently,<br>
bugs like this are extremely hard to find and fix.<br>
<br>
Another common need for web applications is to have access to the<br>
current request object, or security context, or, simply, the request<br>
URL for logging or submitting performance tracing data::<br>
<br>
    async def handle_http_request(request):<br>
        context.current_http_request = request<br>
<br>
        await ...<br>
        # Invoke your framework code, render templates,<br>
        # make DB queries, etc, and use the global<br>
        # 'current_http_request' in that code.<br>
<br>
        # This isn't currently possible to do reliably<br>
        # in asyncio out of the box.<br>
<br>
These examples are just a few out of many, where a reliable way to<br>
store context data is absolutely needed.<br>
<br>
The inability to use TLS for asynchronous code has lead to<br>
proliferation of ad-hoc solutions, limited to be supported only by<br>
code that was explicitly enabled to work with them.<br>
<br>
Current status quo is that any library, including the standard<br>
library, that uses a TLS, will likely not work as expected in<br>
asynchronous code or with generators (see [3]_ as an example issue.)<br>
<br>
Some languages that have coroutines or generators recommend to<br>
manually pass a ``context`` object to every function, see [1]_<br>
describing the pattern for Go.  This approach, however, has limited<br>
use for Python, where we have a huge ecosystem that was built to work<br>
with a TLS-like context.  Moreover, passing the context explicitly<br>
does not work at all for libraries like ``decimal`` or ``numpy``,<br>
which use operator overloading.<br>
<br>
.NET runtime, which has support for async/await, has a generic<br>
solution of this problem, called ``ExecutionContext`` (see [2]_).<br>
On the surface, working with it is very similar to working with a TLS,<br>
but the former explicitly supports asynchronous code.<br>
<br>
<br>
Goals<br>
=====<br>
<br>
The goal of this PEP is to provide a more reliable alternative to<br>
``threading.local()``.  It should be explicitly designed to work with<br>
Python execution model, equally supporting threads, generators, and<br>
coroutines.<br>
<br>
An acceptable solution for Python should meet the following<br>
requirements:<br>
<br>
* Transparent support for code executing in threads, coroutines,<br>
  and generators with an easy to use API.<br>
<br>
* Negligible impact on the performance of the existing code or the<br>
  code that will be using the new mechanism.<br>
<br>
* Fast C API for packages like ``decimal`` and ``numpy``.<br>
<br>
Explicit is still better than implicit, hence the new APIs should only<br>
be used when there is no option to pass the state explicitly.<br>
<br>
With this PEP implemented, it should be possible to update a context<br>
manager like the below::<br>
<br>
    _local = threading.local()<br>
<br>
    @contextmanager<br>
    def context(x):<br>
        old_x = getattr(_local, 'x', None)<br>
        _local.x = x<br>
        try:<br>
            yield<br>
        finally:<br>
            _local.x = old_x<br>
<br>
to a more robust version that can be reliably used in generators<br>
and async/await code, with a simple transformation::<br>
<br>
    @contextmanager<br>
    def context(x):<br>
        old_x = get_execution_context_item('x'<wbr>)<br>
        set_execution_context_item('x'<wbr>, x)<br>
        try:<br>
            yield<br>
        finally:<br>
            set_execution_context_item('x'<wbr>, old_x)<br>
<br>
<br>
Specification<br>
=============<br>
<br>
This proposal introduces a new concept called Execution Context (EC),<br>
along with a set of Python APIs and C APIs to interact with it.<br>
<br>
EC is implemented using an immutable mapping.  Every modification<br>
of the mapping produces a new copy of it.  To illustrate what it<br>
means let's compare it to how we work with tuples in Python::<br>
<br>
    a0 = ()<br>
    a1 = a0 + (1,)<br>
    a2 = a1 + (2,)<br>
<br>
    # a0 is an empty tuple<br>
    # a1 is (1,)<br>
    # a2 is (1, 2)<br>
<br>
Manipulating an EC object would be similar::<br>
<br>
    a0 = EC()<br>
    a1 = a0.set('foo', 'bar')<br>
    a2 = a1.set('spam', 'ham')<br>
<br>
    # a0 is an empty mapping<br>
    # a1 is {'foo': 'bar'}<br>
    # a2 is {'foo': 'bar', 'spam': 'ham'}<br>
<br>
In CPython, every thread that can execute Python code has a<br>
corresponding ``PyThreadState`` object.  It encapsulates important<br>
runtime information like a pointer to the current frame, and is<br>
being used by the ceval loop extensively.  We add a new field to<br>
``PyThreadState``, called ``exec_context``, which points to the<br>
current EC object.<br>
<br>
We also introduce a set of APIs to work with Execution Context.<br>
In this section we will only cover two functions that are needed to<br>
explain how Execution Context works.  See the full list of new APIs<br>
in the `New APIs`_ section.<br>
<br>
* ``sys.get_execution_context_<wbr>item(key, default=None)``: lookup<br>
  ``key`` in the EC of the executing thread.  If not found,<br>
  return ``default``.<br>
<br>
* ``sys.set_execution_context_<wbr>item(key, value)``: get the<br>
  current EC of the executing thread.  Add a ``key``/``value``<br>
  item to it, which will produce a new EC object.  Set the<br>
  new object as the current one for the executing thread.<br>
  In pseudo-code::<br>
<br>
      tstate = PyThreadState_GET()<br>
      ec = tstate.exec_context<br>
      ec2 = ec.set(key, value)<br>
      tstate.exec_context = ec2<br>
<br>
Note, that some important implementation details and optimizations<br>
are omitted here, and will be covered in later sections of this PEP.<br>
<br>
Now let's see how Execution Contexts work with regular multi-threaded<br>
code, generators, and coroutines.<br>
<br>
<br>
Regular & Multithreaded Code<br>
----------------------------<br>
<br>
For regular Python code, EC behaves just like a thread-local.  Any<br>
modification of the EC object produces a new one, which is immediately<br>
set as the current one for the thread state.<br>
<br>
.. figure:: pep-0550/functions.png<br>
   :align: center<br>
   :width: 90%<br>
<br>
   Figure 1.  Execution Context flow in a thread.<br>
<br>
As Figure 1 illustrates, if a function calls<br>
``set_execution_context_item()<wbr>``, the modification of the execution<br>
context will be visible to all subsequent calls and to the caller::<br>
<br>
    def set_foo():<br>
        set_execution_context_item('<wbr>foo', 'spam')<br>
<br>
    set_execution_context_item('<wbr>foo', 'bar')<br>
    print(get_execution_context_<wbr>item('foo'))<br>
<br>
    set_foo()<br>
    print(get_execution_context_<wbr>item('foo'))<br>
<br>
    # will print:<br>
    #   bar<br>
    #   spam<br>
<br>
<br>
Coroutines<br>
----------<br>
<br>
Python :pep:`492` coroutines are used to implement cooperative<br>
multitasking.  For a Python end-user they are similar to threads,<br>
especially when it comes to sharing resources or modifying<br>
the global state.<br>
<br>
An event loop is needed to schedule coroutines.  Coroutines that<br>
are explicitly scheduled by the user are usually called Tasks.<br>
When a coroutine is scheduled, it can schedule other coroutines using<br>
an ``await`` expression.  In async/await world, awaiting a coroutine<br>
can be viewed as a different calling convention: Tasks are similar to<br>
threads, and awaiting on coroutines within a Task is similar to<br>
calling functions within a thread.<br>
<br>
By drawing a parallel between regular multithreaded code and<br>
async/await, it becomes apparent that any modification of the<br>
execution context within one Task should be visible to all coroutines<br>
scheduled within it.  Any execution context modifications, however,<br>
must not be visible to other Tasks executing within the same thread.<br>
<br>
To achieve this, a small set of modifications to the coroutine object<br>
is needed:<br>
<br>
* When a coroutine object is instantiated, it saves a reference to<br>
  the current execution context object to its ``cr_execution_context``<br>
  attribute.<br>
<br>
* Coroutine's ``.send()`` and ``.throw()`` methods are modified as<br>
  follows (in pseudo-C)::<br>
<br>
    if coro->cr_isolated_execution_<wbr>context:<br>
        # Save a reference to the current execution context<br>
        old_context = tstate->execution_context<br>
<br>
        # Set our saved execution context as the current<br>
        # for the current thread.<br>
        tstate->execution_context = coro->cr_execution_context<br>
<br>
        try:<br>
            # Perform the actual `Coroutine.send()` or<br>
            # `Coroutine.throw()` call.<br>
            return coro->send(...)<br>
        finally:<br>
            # Save a reference to the updated execution_context.<br>
            # We will need it later, when `.send()` or `.throw()`<br>
            # are called again.<br>
            coro->cr_execution_context = tstate->execution_context<br>
<br>
            # Restore thread's execution context to what it was before<br>
            # invoking this coroutine.<br>
            tstate->execution_context = old_context<br>
    else:<br>
        # Perform the actual `Coroutine.send()` or<br>
        # `Coroutine.throw()` call.<br>
        return coro->send(...)<br>
<br>
* ``cr_isolated_execution_<wbr>context`` is a new attribute on coroutine<br>
  objects.  Set to ``True`` by default, it makes any execution context<br>
  modifications performed by coroutine to stay visible only to that<br>
  coroutine.<br>
<br>
  When Python interpreter sees an ``await`` instruction, it flips<br>
  ``cr_isolated_execution_<wbr>context`` to ``False`` for the coroutine<br>
  that is about to be awaited.  This makes any changes to execution<br>
  context made by nested coroutine calls within a Task to be visible<br>
  throughout the Task.<br>
<br>
  Because the top-level coroutine (Task) cannot be scheduled with<br>
  ``await`` (in asyncio you need to call ``loop.create_task()`` or<br>
  ``asyncio.ensure_future()`` to schedule a Task), all execution<br>
  context modifications are guaranteed to stay within the Task.<br>
<br>
* We always work with ``tstate->exec_context``.  We use<br>
  ``coro->cr_execution_context`` only to store coroutine's execution<br>
  context when it is not executing.<br>
<br>
Figure 2 below illustrates how execution context mutations work with<br>
coroutines.<br>
<br>
.. figure:: pep-0550/coroutines.png<br>
   :align: center<br>
   :width: 90%<br>
<br>
   Figure 2.  Execution Context flow in coroutines.<br>
<br>
In the above diagram:<br>
<br>
* When "coro1" is created, it saves a reference to the current<br>
  execution context "2".<br>
<br>
* If it makes any change to the context, it will have its own<br>
  execution context branch "2.1".<br>
<br>
* When it awaits on "coro2", any subsequent changes it does to<br>
  the execution context are visible to "coro1", but not outside<br>
  of it.<br>
<br>
In code::<br>
<br>
    async def inner_foo():<br>
        print('inner_foo:', get_execution_context_item('<wbr>key'))<br>
        set_execution_context_item('<wbr>key', 2)<br>
<br>
    async def foo():<br>
        print('foo:', get_execution_context_item('<wbr>key'))<br>
<br>
        set_execution_context_item('<wbr>key', 1)<br>
        await inner_foo()<br>
<br>
        print('foo:', get_execution_context_item('<wbr>key'))<br>
<br>
<br>
    set_execution_context_item('<wbr>key', 'spam')<br>
    print('main:', get_execution_context_item('<wbr>key'))<br>
<br>
    asyncio.get_event_loop().run_<wbr>until_complete(foo())<br>
<br>
    print('main:', get_execution_context_item('<wbr>key'))<br>
<br>
which will output::<br>
<br>
    main: spam<br>
    foo: spam<br>
    inner_foo: 1<br>
    foo: 2<br>
    main: spam<br>
<br>
Generator-based coroutines (generators decorated with<br>
``types.coroutine`` or ``asyncio.coroutine``) behave exactly as<br>
native coroutines with regards to execution context management:<br>
their ``yield from`` expression is semantically equivalent to<br>
``await``.<br>
<br>
<br>
Generators<br>
----------<br>
<br>
Generators in Python, while similar to Coroutines, are used in a<br>
fundamentally different way.  They are producers of data, and<br>
they use ``yield`` expression to suspend/resume their execution.<br>
<br>
A crucial difference between ``await coro`` and ``yield value`` is<br>
that the former expression guarantees that the ``coro`` will be<br>
executed to the end, while the latter is producing ``value`` and<br>
suspending the generator until it gets iterated again.<br>
<br>
Generators share 99% of their implementation with coroutines, and<br>
thus have similar new attributes ``gi_execution_context`` and<br>
``gi_isolated_execution_<wbr>context``.  Similar to coroutines, generators<br>
save a reference to the current execution context when they are<br>
instantiated.  The have the same implementation of ``.send()`` and<br>
``.throw()`` methods.<br>
<br>
The only difference is that<br>
``gi_isolated_execution_<wbr>context`` is always set to ``True``, and<br>
is never modified by the interpreter.  ``yield from o`` expression in<br>
regular generators that are not decorated with ``types.coroutine``,<br>
is semantically equivalent to ``for v in o: yield v``.<br>
<br>
.. figure:: pep-0550/generators.png<br>
   :align: center<br>
   :width: 90%<br>
<br>
   Figure 3.  Execution Context flow in a generator.<br>
<br>
In the above diagram:<br>
<br>
* When "gen1" is created, it saves a reference to the current<br>
  execution context "2".<br>
<br>
* If it makes any change to the context, it will have its own<br>
  execution context branch "2.1".<br>
<br>
* When "gen2" is created, it saves a reference to the current<br>
  execution context for it -- "2.1".<br>
<br>
* Any subsequent execution context updated in "gen2" will only<br>
  be visible to "gen2".<br>
<br>
* Likewise, any context changes that "gen1" will do after it<br>
  created "gen2" will not be visible to "gen2".<br>
<br>
In code::<br>
<br>
    def inner_foo():<br>
        for i in range(3):<br>
            print('inner_foo:', get_execution_context_item('<wbr>key'))<br>
            set_execution_context_item('<wbr>key', i)<br>
            yield i<br>
<br>
<br>
    def foo():<br>
        set_execution_context_item('<wbr>key', 'spam')<br>
        print('foo:', get_execution_context_item('<wbr>key'))<br>
<br>
        inner = inner_foo()<br>
<br>
        while True:<br>
            val = next(inner, None)<br>
            if val is None:<br>
                break<br>
            yield val<br>
            print('foo:', get_execution_context_item('<wbr>key'))<br>
<br>
    set_execution_context_item('<wbr>key', 'spam')<br>
    print('main:', get_execution_context_item('<wbr>key'))<br>
<br>
    list(foo())<br>
<br>
    print('main:', get_execution_context_item('<wbr>key'))<br>
<br>
which will output::<br>
<br>
    main: ham<br>
    foo: spam<br>
    inner_foo: spam<br>
    foo: spam<br>
    inner_foo: 0<br>
    foo: spam<br>
    inner_foo: 1<br>
    foo: spam<br>
    main: ham<br>
<br>
As we see, any modification of the execution context in a generator<br>
is visible only to the generator itself.<br>
<br>
There is one use-case where it is desired for generators to affect<br>
the surrounding execution context: ``contextlib.contextmanager``<br>
decorator.  To make the following work::<br>
<br>
    @contextmanager<br>
    def context(x):<br>
        old_x = get_execution_context_item('x'<wbr>)<br>
        set_execution_context_item('x'<wbr>, x)<br>
        try:<br>
            yield<br>
        finally:<br>
            set_execution_context_item('x'<wbr>, old_x)<br>
<br>
we modified ``contextmanager`` to flip<br>
``gi_isolated_execution_<wbr>context`` flag to ``False`` on its generator.<br>
<br>
<br>
Greenlets<br>
---------<br>
<br>
Greenlet is an alternative implementation of cooperative<br>
scheduling for Python.  Although greenlet package is not part of<br>
CPython, popular frameworks like gevent rely on it, and it is<br>
important that greenlet can be modified to support execution<br>
contexts.<br>
<br>
In a nutshell, greenlet design is very similar to design of<br>
generators.  The main difference is that for generators, the stack<br>
is managed by the Python interpreter.  Greenlet works outside of the<br>
Python interpreter, and manually saves some ``PyThreadState``<br>
fields and pushes/pops the C-stack.  Since Execution Context is<br>
implemented on top of ``PyThreadState``, it's easy to add<br>
transparent support of it to greenlet.<br>
<br>
<br>
New APIs<br>
========<br>
<br>
Even though this PEP adds a number of new APIs, please keep in mind,<br>
that most Python users will likely ever use only two of them:<br>
``sys.get_execution_context_<wbr>item()`` and<br>
``sys.set_execution_context_<wbr>item()``.<br>
<br>
<br>
Python<br>
------<br>
<br>
1. ``sys.get_execution_context_<wbr>item(key, default=None)``: lookup<br>
   ``key`` for the current Execution Context.  If not found,<br>
   return ``default``.<br>
<br>
2. ``sys.set_execution_context_<wbr>item(key, value)``: set<br>
   ``key``/``value`` item for the current Execution Context.<br>
   If ``value`` is ``None``, the item will be removed.<br>
<br>
3. ``sys.get_execution_context()`<wbr>`: return the current Execution<br>
   Context object: ``sys.ExecutionContext``.<br>
<br>
4. ``sys.set_execution_context(<wbr>ec)``: set the passed<br>
   ``sys.ExecutionContext`` instance as a current one for the current<br>
   thread.<br>
<br>
5. ``sys.ExecutionContext`` object.<br>
<br>
   Implementation detail: ``sys.ExecutionContext`` wraps a low-level<br>
   ``PyExecContextData`` object.  ``sys.ExecutionContext`` has a<br>
   mutable mapping API, abstracting away the real immutable<br>
   ``PyExecContextData``.<br>
<br>
   * ``ExecutionContext()``: construct a new, empty, execution<br>
     context.<br>
<br>
   * ``ec.run(func, *args)`` method: run ``func(*args)`` in the<br>
     ``ec`` execution context.<br>
<br>
   * ``ec[key]``: lookup ``key`` in ``ec`` context.<br>
<br>
   * ``ec[key] = value``: assign ``key``/``value`` item to the ``ec``.<br>
<br>
   * ``ec.get()``, ``ec.items()``, ``ec.values()``, ``ec.keys()``, and<br>
     ``ec.copy()`` are similar to that of ``dict`` object.<br>
<br>
<br>
C API<br>
-----<br>
<br>
C API is different from the Python one because it operates directly<br>
on the low-level immutable ``PyExecContextData`` object.<br>
<br>
1. New ``PyThreadState->exec_context`<wbr>` field, pointing to a<br>
   ``PyExecContextData`` object.<br>
<br>
2. ``PyThreadState_<wbr>SetExecContextItem`` and<br>
   ``PyThreadState_<wbr>GetExecContextItem`` similar to<br>
   ``sys.set_execution_context_<wbr>item()`` and<br>
   ``sys.get_execution_context_<wbr>item()``.<br>
<br>
3. ``PyThreadState_<wbr>GetExecContext``: similar to<br>
   ``sys.get_execution_context()`<wbr>`.  Always returns an<br>
   ``PyExecContextData`` object.  If ``PyThreadState->exec_context`<wbr>`<br>
   is ``NULL`` an new and empty one will be created and assigned<br>
   to ``PyThreadState->exec_context`<wbr>`.<br>
<br>
4. ``PyThreadState_<wbr>SetExecContext``: similar to<br>
   ``sys.set_execution_context()`<wbr>`.<br>
<br>
5. ``PyExecContext_New``: create a new empty ``PyExecContextData``<br>
   object.<br>
<br>
6. ``PyExecContext_SetItem`` and ``PyExecContext_GetItem``.<br>
<br>
The exact layout ``PyExecContextData`` is private, which allows<br>
to switch it to a different implementation later.  More on that<br>
in the `Implementation Details`_ section.<br>
<br>
<br>
Modifications in Standard Library<br>
==============================<wbr>===<br>
<br>
* ``contextlib.contextmanager`` was updated to flip the new<br>
  ``gi_isolated_execution_<wbr>context`` attribute on the generator.<br>
<br>
* ``asyncio.events.Handle`` object now captures the current<br>
  execution context when it is created, and uses the saved<br>
  execution context to run the callback (with<br>
  ``ExecutionContext.run()`` method.)  This makes<br>
  ``loop.call_soon()`` to run callbacks in the execution context<br>
  they were scheduled.<br>
<br>
  No modifications in ``asyncio.Task`` or ``asyncio.Future`` were<br>
  necessary.<br>
<br>
Some standard library modules like ``warnings`` and ``decimal``<br>
can be updated to use new execution contexts.  This will be considered<br>
in separate issues if this PEP is accepted.<br>
<br>
<br>
Backwards Compatibility<br>
=======================<br>
<br>
This proposal preserves 100% backwards compatibility.<br>
<br>
<br>
Performance<br>
===========<br>
<br>
Implementation Details<br>
----------------------<br>
<br>
The new ``PyExecContextData`` object is wrapping a ``dict`` object.<br>
Any modification requires creating a shallow copy of the dict.<br>
<br>
While working on the reference implementation of this PEP, we were<br>
able to optimize ``dict.copy()`` operation **5.5x**, see [4]_ for<br>
details.<br>
<br>
.. figure:: pep-0550/dict_copy.png<br>
   :align: center<br>
   :width: 100%<br>
<br>
   Figure 4.<br>
<br>
Figure 4 shows that the performance of immutable dict implemented<br>
with shallow copying is expectedly O(n) for the ``set()`` operation.<br>
However, this is tolerable until dict has more than 100 items<br>
(1 ``set()`` takes about a microsecond.)<br>
<br>
Judging by the number of modules that need EC in Standard Library<br>
it is likely that real world Python applications will use<br>
significantly less than 100 execution context variables.<br>
<br>
The important point is that the cost of accessing a key in<br>
Execution Context is always O(1).<br>
<br>
If the ``set()`` operation performance is a major concern, we discuss<br>
alternative approaches that have O(1) or close ``set()`` performance<br>
in `Alternative Immutable Dict Implementation`_, `Faster C API`_, and<br>
`Copy-on-write Execution Context`_ sections.<br>
<br>
<br>
Generators and Coroutines<br>
-------------------------<br>
<br>
Using a microbenchmark for generators and coroutines from :pep:`492`<br>
([12]_), it was possible to observe 0.5 to 1% performance degradation.<br>
<br>
asyncio echoserver microbechmarks from the uvloop project [13]_<br>
showed 1-1.5% performance degradation for asyncio code.<br>
<br>
asyncpg benchmarks [14]_, that execute more code and are closer to a<br>
real-world application did not exhibit any noticeable performance<br>
change.<br>
<br>
<br>
Overall Performance Impact<br>
--------------------------<br>
<br>
The total number of changed lines in the ceval loop is 2 -- in the<br>
``YIELD_FROM`` opcode implementation.  Only performance of generators<br>
and coroutines can be affected by the proposal.<br>
<br>
This was confirmed by running Python Performance Benchmark Suite<br>
[15]_, which demonstrated that there is no difference between<br>
3.7 master branch and this PEP reference implementation branch<br>
(full benchmark results can be found here [16]_.)<br>
<br>
<br>
Design Considerations<br>
=====================<br>
<br>
Alternative Immutable Dict Implementation<br>
------------------------------<wbr>-----------<br>
<br>
Languages like Clojure and Scala use Hash Array Mapped Tries (HAMT)<br>
to implement high performance immutable collections [5]_, [6]_.<br>
<br>
Immutable mappings implemented with HAMT have O(log\ :sub:`32`\ N)<br>
performance for both ``set()`` and ``get()`` operations, which will<br>
be essentially O(1) for relatively small mappings in EC.<br>
<br>
To assess if HAMT can be used for Execution Context, we implemented<br>
it in CPython [7]_.<br>
<br>
.. figure:: pep-0550/hamt_vs_dict.png<br>
   :align: center<br>
   :width: 100%<br>
<br>
   Figure 5.  Benchmark code can be found here: [9]_.<br>
<br>
Figure 5 shows that HAMT indeed displays O(1) performance for all<br>
benchmarked dictionary sizes.  For dictionaries with less than 100<br>
items, HAMT is a bit slower than Python dict/shallow copy.<br>
<br>
.. figure:: pep-0550/lookup_hamt.png<br>
   :align: center<br>
   :width: 100%<br>
<br>
   Figure 6.  Benchmark code can be found here: [10]_.<br>
<br>
Figure 6 below shows comparison of lookup costs between Python dict<br>
and an HAMT immutable mapping.  HAMT lookup time is 30-40% worse<br>
than Python dict lookups on average, which is a very good result,<br>
considering how well Python dicts are optimized.<br>
<br>
Note, that according to [8]_, HAMT design can be further improved.<br>
<br>
The bottom line is that the current approach with implementing<br>
an immutable mapping with shallow-copying dict will likely perform<br>
adequately in real-life applications.  The HAMT solution is more<br>
future proof, however.<br>
<br>
The proposed API is designed in such a way that the underlying<br>
implementation of the mapping can be changed completely without<br>
affecting the Execution Context `Specification`_, which allows<br>
us to switch to HAMT at some point if necessary.<br>
<br>
<br>
Copy-on-write Execution Context<br>
------------------------------<wbr>-<br>
<br>
The implementation of Execution Context in .NET is different from<br>
this PEP. .NET uses copy-on-write mechanism and a regular mutable<br>
mapping.<br>
<br>
One way to implement this in CPython would be to have two new<br>
fields in ``PyThreadState``:<br>
<br>
* ``exec_context`` pointing to the current Execution Context mapping;<br>
* ``exec_context_copy_on_write`` flag, set to ``0`` initially.<br>
<br>
The idea is that whenever we are modifying the EC, the copy-on-write<br>
flag is checked, and if it is set to ``1``, the EC is copied.<br>
<br>
Modifications to Coroutine and Generator ``.send()`` and ``.throw()``<br>
methods described in the `Coroutines`_ section will be almost the<br>
same, except that in addition to the ``gi_execution_context`` they<br>
will have a ``gi_exec_context_copy_on_<wbr>write`` flag.  When a coroutine<br>
or a generator starts, the flag will be set to ``1``.  This will<br>
ensure that any modification of the EC performed within a coroutine<br>
or a generator will be isolated.<br>
<br>
This approach has one advantage:<br>
<br>
* For Execution Context that contains a large number of items,<br>
  copy-on-write is a more efficient solution than the shallow-copy<br>
  dict approach.<br>
<br>
However, we believe that copy-on-write disadvantages are more<br>
important to consider:<br>
<br>
* Copy-on-write behaviour for generators and coroutines makes<br>
  EC semantics less predictable.<br>
<br>
  With immutable EC approach, generators and coroutines always<br>
  execute in the EC that was current at the moment of their<br>
  creation.  Any modifications to the outer EC while a generator<br>
  or a coroutine is executing are not visible to them::<br>
<br>
    def generator():<br>
        yield 1<br>
        print(get_execution_context_<wbr>item('key'))<br>
        yield 2<br>
<br>
    set_execution_context_item('<wbr>key', 'spam')<br>
    gen = iter(generator())<br>
    next(gen)<br>
    set_execution_context_item('<wbr>key', 'ham')<br>
    next(gen)<br>
<br>
  The above script will always print 'spam' with immutable EC.<br>
<br>
  With a copy-on-write approach, the above script will print 'ham'.<br>
  Now, consider that ``generator()`` was refactored to call some<br>
  library function, that uses Execution Context::<br>
<br>
    def generator():<br>
        yield 1<br>
        some_function_that_uses_<wbr>decimal_context()<br>
        print(get_execution_context_<wbr>item('key'))<br>
        yield 2<br>
<br>
  Now, the script will print 'spam', because<br>
  ``some_function_that_uses_<wbr>decimal_context`` forced the EC to copy,<br>
  and ``set_execution_context_item('<wbr>key', 'ham')`` line did not<br>
  affect the ``generator()`` code after all.<br>
<br>
* Similarly to the previous point, ``sys.ExecutionContext.run()``<br>
  method will also become less predictable, as<br>
  ``sys.get_execution_context()`<wbr>` would still return a reference to<br>
  the current mutable EC.<br>
<br>
  We can't modify ``sys.get_execution_context()`<wbr>` to return a shallow<br>
  copy of the current EC, because this would seriously harm<br>
  performance of ``asyncio.call_soon()`` and similar places, where<br>
  it is important to propagate the Execution Context.<br>
<br>
* Even though copy-on-write requires to shallow copy the execution<br>
  context object less frequently, copying will still take place<br>
  in coroutines and generators.  In which case, HAMT approach will<br>
  perform better for medium to large sized execution contexts.<br>
<br>
All in all, we believe that the copy-on-write approach introduces<br>
very subtle corner cases that could lead to bugs that are<br>
exceptionally hard to discover and fix.<br>
<br>
The immutable EC solution in comparison is always predictable and<br>
easy to reason about.  Therefore we believe that any slight<br>
performance gain that the copy-on-write solution might offer is not<br>
worth it.<br>
<br>
<br>
Faster C API<br>
------------<br>
<br>
Packages like numpy and standard library modules like decimal need<br>
to frequently query the global state for some local context<br>
configuration.  It is important that the APIs that they use is as<br>
fast as possible.<br>
<br>
The proposed ``PyThreadState_<wbr>SetExecContextItem`` and<br>
``PyThreadState_<wbr>GetExecContextItem`` functions need to get the<br>
current thread state with ``PyThreadState_GET()`` (fast) and then<br>
perform a hash lookup (relatively slow).  We can eliminate the hash<br>
lookup by adding three additional C API functions:<br>
<br>
* ``Py_ssize_t PyExecContext_RequestIndex(<wbr>char *key_name)``:<br>
  a function similar to the existing ``_PyEval_<wbr>RequestCodeExtraIndex``<br>
  introduced :pep:`523`.  The idea is to request a unique index<br>
  that can later be used to lookup context items.<br>
<br>
  The ``key_name`` can later be used by ``sys.ExecutionContext`` to<br>
  introspect items added with this API.<br>
<br>
* ``PyThreadState_<wbr>SetExecContextIndexedItem(Py_<wbr>ssize_t index, PyObject *val)``<br>
  and ``PyThreadState_<wbr>GetExecContextIndexedItem(Py_<wbr>ssize_t index)``<br>
  to request an item by its index, avoiding the cost of hash lookup.<br>
<br>
<br>
Why setting a key to None removes the item?<br>
------------------------------<wbr>-------------<br>
<br>
Consider a context manager::<br>
<br>
    @contextmanager<br>
    def context(x):<br>
        old_x = get_execution_context_item('x'<wbr>)<br>
        set_execution_context_item('x'<wbr>, x)<br>
        try:<br>
            yield<br>
        finally:<br>
            set_execution_context_item('x'<wbr>, old_x)<br>
<br>
With ``set_execution_context_item(<wbr>key, None)`` call removing the<br>
``key``, the user doesn't need to write additional code to remove<br>
the ``key`` if it wasn't in the execution context already.<br>
<br>
An alternative design with ``del_execution_context_item()<wbr>`` method<br>
would look like the following::<br>
<br>
    @contextmanager<br>
    def context(x):<br>
        not_there = object()<br>
        old_x = get_execution_context_item('x'<wbr>, not_there)<br>
        set_execution_context_item('x'<wbr>, x)<br>
        try:<br>
            yield<br>
        finally:<br>
            if old_x is not_there:<br>
                del_execution_context_item('x'<wbr>)<br>
            else:<br>
                set_execution_context_item('x'<wbr>, old_x)<br>
<br>
<br>
Can we fix ``PyThreadState_GetDict()``?<br>
------------------------------<wbr>---------<br>
<br>
``PyThreadState_GetDict`` is a TLS, and some of its existing users<br>
might depend on it being just a TLS.  Changing its behaviour to follow<br>
the Execution Context semantics would break backwards compatibility.<br>
<br>
<br>
PEP 521<br>
-------<br>
<br>
:pep:`521` proposes an alternative solution to the problem:<br>
enhance Context Manager Protocol with two new methods: ``__suspend__``<br>
and ``__resume__``.  To make it compatible with async/await,<br>
the Asynchronous Context Manager Protocol will also need to be<br>
extended with ``__asuspend__`` and ``__aresume__``.<br>
<br>
This allows to implement context managers like decimal context and<br>
``numpy.errstate`` for generators and coroutines.<br>
<br>
The following code::<br>
<br>
    class Context:<br>
<br>
        def __enter__(self):<br>
            self.old_x = get_execution_context_item('x'<wbr>)<br>
            set_execution_context_item('x'<wbr>, 'something')<br>
<br>
        def __exit__(self, *err):<br>
            set_execution_context_item('x'<wbr>, self.old_x)<br>
<br>
would become this::<br>
<br>
    class Context:<br>
<br>
        def __enter__(self):<br>
            self.old_x = get_execution_context_item('x'<wbr>)<br>
            set_execution_context_item('x'<wbr>, 'something')<br>
<br>
        def __suspend__(self):<br>
            set_execution_context_item('x'<wbr>, self.old_x)<br>
<br>
        def __resume__(self):<br>
            set_execution_context_item('x'<wbr>, 'something')<br>
<br>
        def __exit__(self, *err):<br>
            set_execution_context_item('x'<wbr>, self.old_x)<br>
<br>
Besides complicating the protocol, the implementation will likely<br>
negatively impact performance of coroutines, generators, and any code<br>
that uses context managers, and will notably complicate the<br>
interpreter implementation.  It also does not solve the leaking state<br>
problem for greenlet/gevent.<br>
<br>
:pep:`521` also does not provide any mechanism to propagate state<br>
in a local context, like storing a request object in an HTTP request<br>
handler to have better logging.<br>
<br>
<br>
Can Execution Context be implemented outside of CPython?<br>
------------------------------<wbr>--------------------------<br>
<br>
Because async/await code needs an event loop to run it, an EC-like<br>
solution can be implemented in a limited way for coroutines.<br>
<br>
Generators, on the other hand, do not have an event loop or<br>
trampoline, making it impossible to intercept their ``yield`` points<br>
outside of the Python interpreter.<br>
<br>
<br>
Reference Implementation<br>
========================<br>
<br>
The reference implementation can be found here: [11]_.<br>
<br>
<br>
References<br>
==========<br>
<br>
.. [1] <a href="https://blog.golang.org/context" rel="noreferrer" target="_blank">https://blog.golang.org/<wbr>context</a><br>
<br>
.. [2] <a href="https://msdn.microsoft.com/en-us/library/system.threading.executioncontext.aspx" rel="noreferrer" target="_blank">https://msdn.microsoft.com/en-<wbr>us/library/system.threading.<wbr>executioncontext.aspx</a><br>
<br>
.. [3] <a href="https://github.com/numpy/numpy/issues/9444" rel="noreferrer" target="_blank">https://github.com/numpy/<wbr>numpy/issues/9444</a><br>
<br>
.. [4] <a href="http://bugs.python.org/issue31179" rel="noreferrer" target="_blank">http://bugs.python.org/<wbr>issue31179</a><br>
<br>
.. [5] <a href="https://en.wikipedia.org/wiki/Hash_array_mapped_trie" rel="noreferrer" target="_blank">https://en.wikipedia.org/wiki/<wbr>Hash_array_mapped_trie</a><br>
<br>
.. [6] <a href="http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii.html" rel="noreferrer" target="_blank">http://blog.higher-order.net/<wbr>2010/08/16/assoc-and-clojures-<wbr>persistenthashmap-part-ii.html</a><br>
<br>
.. [7] <a href="https://github.com/1st1/cpython/tree/hamt" rel="noreferrer" target="_blank">https://github.com/1st1/<wbr>cpython/tree/hamt</a><br>
<br>
.. [8] <a href="https://michael.steindorfer.name/publications/oopsla15.pdf" rel="noreferrer" target="_blank">https://michael.steindorfer.<wbr>name/publications/oopsla15.pdf</a><br>
<br>
.. [9] <a href="https://gist.github.com/1st1/9004813d5576c96529527d44c5457dcd" rel="noreferrer" target="_blank">https://gist.github.com/1st1/<wbr>9004813d5576c96529527d44c5457d<wbr>cd</a><br>
<br>
.. [10] <a href="https://gist.github.com/1st1/dbe27f2e14c30cce6f0b5fddfc8c437e" rel="noreferrer" target="_blank">https://gist.github.com/1st1/<wbr>dbe27f2e14c30cce6f0b5fddfc8c43<wbr>7e</a><br>
<br>
.. [11] <a href="https://github.com/1st1/cpython/tree/pep550" rel="noreferrer" target="_blank">https://github.com/1st1/<wbr>cpython/tree/pep550</a><br>
<br>
.. [12] <a href="https://www.python.org/dev/peps/pep-0492/#async-await" rel="noreferrer" target="_blank">https://www.python.org/dev/<wbr>peps/pep-0492/#async-await</a><br>
<br>
.. [13] <a href="https://github.com/MagicStack/uvloop/blob/master/examples/bench/echoserver.py" rel="noreferrer" target="_blank">https://github.com/MagicStack/<wbr>uvloop/blob/master/examples/<wbr>bench/echoserver.py</a><br>
<br>
.. [14] <a href="https://github.com/MagicStack/pgbench" rel="noreferrer" target="_blank">https://github.com/MagicStack/<wbr>pgbench</a><br>
<br>
.. [15] <a href="https://github.com/python/performance" rel="noreferrer" target="_blank">https://github.com/python/<wbr>performance</a><br>
<br>
.. [16] <a href="https://gist.github.com/1st1/6b7a614643f91ead3edf37c4451a6b4c" rel="noreferrer" target="_blank">https://gist.github.com/1st1/<wbr>6b7a614643f91ead3edf37c4451a6b<wbr>4c</a><br>
<br>
<br>
Copyright<br>
=========<br>
<br>
This document has been placed in the public domain.<br>
______________________________<wbr>_________________<br>
Python-ideas mailing list<br>
<a href="mailto:Python-ideas@python.org">Python-ideas@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/python-ideas" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/python-ideas</a><br>
Code of Conduct: <a href="http://python.org/psf/codeofconduct/" rel="noreferrer" target="_blank">http://python.org/psf/<wbr>codeofconduct/</a><br>
</blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Antoine Rozo</div></div>
</div>