<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;padding-left:1ex;border-left-color:rgb(204,204,204);border-left-width:1px;border-left-style:solid">
<div><br>
>> (1) v = u + at<br>
>> (2) s = 1/2(u + v)t<br>
>> (3) s = ut + 1/2(at^2)<br>
>> (4) v^2 = u^2 + 2as<br>
>><br>
>> Only (1) and (3) are needed.<br>
><br>
> Okay, what's u here? Heh.<br>
<br>
</div>u is the initial velocity; v is the velocity after accelerating at a for time t.<br>
<span class="HOEnZb"><font color="#888888"></font></span></blockquote><div><br></div><div>This assumes that the viscosity is in a state of superfluidity, and in a perfect state between itself, and it's traveling environment.</div>
<div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;padding-left:1ex;border-left-color:rgb(204,204,204);border-left-width:1px;border-left-style:solid"><span class="HOEnZb"><font color="#888888">--<br>
<a href="https://mail.python.org/mailman/listinfo/python-list" target="_blank">https://mail.python.org/mailman/listinfo/python-list</a><br>
</font></span></blockquote></div><br><br clear="all"><br>-- <br>Best Regards,<br><span style="font-family:arial,helvetica,sans-serif">David Hutto</span><br>
</div></div>