<div dir="ltr"><div class="gmail_extra"><br><div class="gmail_quote">On Wed, Jul 30, 2014 at 6:28 PM, Vincent Davis <span dir="ltr"><<a href="mailto:vincent@vincentdavis.net" target="_blank">vincent@vincentdavis.net</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">
The real slow part seems to be</div><div class="im">
<div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><div class="gmail_default">for n in drugs:</div><div class="gmail_default"> df[n] = df[['MED1','MED2','MED3','MED4','MED5']].isin([drugs[n]]).any(1)</div>
</div></div></blockquote></div><br><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">I was wrong, this is fast, it was selecting the columns that was slow. using</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">
<div class="gmail_default">keep_col = ['PATCODE', 'PATWT', 'VDAYR', 'VMONTH', 'MED1', 'MED2', 'MED3', 'MED4', 'MED5']</div><div class="gmail_default">
df = df[keep_col]</div><div class="gmail_default"><br></div><div class="gmail_default">took the time down from 19sec to 2 sec.</div></div><br><br clear="all"><div><div>Vincent Davis</div><div>720-301-3003<span></span><span></span></div>
</div>
</div></div>