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Abstract. We present an image processing pipeline which accepts a large
number of images, containing spatial expression information for thou-
sands of genes in Drosophila imaginal discs. We assume that the gene
activations are binary and can be expressed as a union of a small set
of non-overlapping spatial patterns, yielding a compact representation
of the spatial activation of each gene. This lends itself well to further
automatic analysis, with the hope of discovering new biological relation-
ships. Traditionally, the images were labeled manually, which was very
time consuming. The key part of our work is a binary pattern dictionary
learning algorithm, that takes a set of binary images and determines
a set of patterns, which can be used to represent the input images with
a small error. We also describe the preprocessing phase, where input im-
ages are segmented to recover the activation images and spatially aligned
to a common reference. We compare binary pattern dictionary learning
to existing alternative methods on synthetic data and also show results
of the algorithm on real microscopy images of the Drosophila imaginal
discs.

1 Introduction

The fruit fly Drosophila is a frequently used valuable subject in modern experi-
mental biology due to their short life cycle and genetic similarity to humans [1].
Large scale mapping of the gene expressions was performed in embryos [2,3] as
well as in imaginal discs [4,5], which are essential for the initial development of
the adult fly. The expressed gene is highlighted using molecular biology methods
and microscopy images of many thousands samples are acquired.

The final goal is to understand the role of the different genes by comparing
locations, where the genes are expressed, with the known information about
the function of the different areas. To reduce the dimensionality of the problem
and enable an efficient statistical analysis, the observed spatial expressions are
described by a set of labels from a limited, application specific dictionary, called
an ‘atlas’. Example labels for the leg imaginal disc are ‘dorsal’ or ‘ventral’ but
also ‘stripes’ or ‘ubiquitous’. Given such sets of labels, correlations with gene
ontologies can be then found using data mining methods [6,7,8].
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(a) (b) (c)

Fig. 1. Presenting samples of aligned Drosophila imaginal discs (eye antenna
discs type) and their segmentation. First, we show the sensed images (a) with
marked contour of segmented disc (orange) and gene expression (red) followed
by visualisation of the segmented discs (b) and segmented gene expressions (c).
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The dictionary as well as the labels for individual images are usually de-
termined manually or semi-manually [2,9,10], which is extremely intensive work.
Some automatic methods exists, based on e.g. sparse Bayesian factor models [11]
or non-negative matrix factorization [12]. In contrast to these methods, we as-
sume in this work that the activation and the patterns are inherently binary.
We further assume that the patterns, corresponding to anatomically defined
zones, are compact and non-overlapping. These constraints should increase the
robustness of the estimation and yield more biologically plausible results.

1.1 State-of-the-art

Let a matrix X ∈ R|Ω|×N be a rearranged set of pixels of N images with pixel
coordinates Ω. In our case, the images are assumed to be aligned and the pixel
intensities to correspond to the gene activations. A linear decomposition of X
can be found by minimizing

min
Y,W
‖X − Y ·W‖2 (1)

where Y ∈ R|Ω|×L corresponds to a dictionary (or ‘atlas’) with L patterns
and W ∈ RL×N are image specific weights. We shall give a few examples of
known methods, differing in additional assumptions and constraints. Built on
the well-known PCA, sparse Principal Component Analysis [13] (sPCA) assumes
the weights W to be sparse. Fast Independent Component Analysis [14] (Fas-
tICA) seeks for spatial independence of the patterns. Dictionary Learning [15]
(DL) with Matching Pursuit is a greedy iterative approximation method with
many variants, mainly in the field of sparse linear approximation of signals. Non-
negative Matrix Factorization [16] (NMF) adds the non-negativity constraints,
while sparse Bayesian models add a probabilistic prior on the weights, encour-
aging sparsity. Both methods were used for estimating gene expression patterns
in Drosophila embryos [11,12] (see Berkeley Drosophila Genome Project1).

There is far less literature in the case of binary X, Y , or W . If the requirement
of spatial compactness of the patterns is dropped, then the problem is called
binary matrix factorization [17,18] and is often used in data mining. Simplifying
further to allow only one pattern per image leads to the problem of vector
quantization [19].

2 Method

We shall now describe the complete pipeline consists of preprocessing (segmenta-
tion and registration) and atlas estimation via Binary Pattern Dictionary Learn-
ing (BPDL), as illustrated in Fig. 2.

1 http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
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Fig. 2. A flowchart of the complete pipeline for processing images of Drosophila
imaginal discs: (i) a pixel-wise segmentation into 3 classes (background, imaginal
disk and gene expression); (ii) registration of binary segmented imaginal discs
onto a reference shape (disc prototype); (iii) atlas estimation from aligned binary
gene expressions.

2.1 Preprocessing

Given a set of images of imaginal discs (see Fig. 1a) containing both anatomical
and gene expression information, preprocessing is applied to obtain a set of
segmented and aligned gene expression images, which serves as input for the
subsequent binary dictionary learning (see Fig. 2).

Segmentation. We first segment the input images into three clases (background,
imaginal disc, gene activation) by the following steps [20]:

a) calculate SLIC superpixels [21];

b) calculate superpixel colour features — mean, median, and variance;

c) estimating a Gaussian Mixture Model (GMM) with one component per class,

d) calculate superpixel-wise class probabilities based on the GMM;

e) apply Graph Cut [22] to estimate a spatially regularized segmentation;

f) post-process, e.g. suppress very small regions and identifying the imaginal
disc component.

Registration. For each of the four disc types, a reference shape is calculated as
the mean disc shape over all images. Then all other images are registered to the
reference shape. We use a fast elastic registration algorithm [23], which works
directly on the segmented images, transforming the disc shapes by aligning their
contours, ignoring the activations (see Fig. 1b). The activations (Fig. 1c) are
then aligned using the recovered transformation.
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Algorithm 1 General schema of BPDL algorithm.

1: initialise atlas y
2: while not converged do
3: update weights w ∈W
4: reinitialise empty patterns in y∗

5: update atlas y∗ via Graph Cut
6: end while

2.2 Binary pattern dictionary learning — problem definition

Let us define the image pixels as Ω ⊆ Zd, with d = 2, and the input binary
image as g : Ω → {0, 1}. Our task is to find an atlas y : Ω → L, with labels
L = [0, . . . ,K], assigning to each pixel either a background (label l = 0), or one
of the labels (patterns, set of equal labels) 1, . . . ,K. Each binary weight vector
w : L→ {0, 1} yields an image ĝ as a union of the selected patterns in atlas y

ĝ =
∑
l∈L

wl · Jy = lK (2)

where J·K denotes the Iverson bracket. Note that this is a special case of (1), with
all variables binary. Note also, that in this representation, the patterns cannot
overlap. The approximation error on one image g and its representation by y
and w is the Hamming distance

F (g,y,w) =
∑
i∈Ω

Jgi 6= ĝiK =
∑
i∈Ω

∣∣∣∣∣gi −∑
l∈L

wl · Jy = lK

∣∣∣∣∣ (3)

To encourage spatial compactness of the estimated atlas, we shall penalize
differences between neighboring pixels i, j in the atlas

H(y) =
∑

i,j∈Ω, i6=j,
d(i,j)=1

Jyi 6= yjK (4)

where the Kronecker delta Jyi 6= yjK for all combinations of yi,j ∈ L can be rep-
resented as a square matrix with zeros on the main diagonal and ones otherwise

The optimal atlas and the associated weights are found by optimizing the
mean approximation error for all N images

y∗,w∗ = arg min
y,W

1

N

∑
n

F (gn,y,wn) + β ·H(y) (5)

where the matrix W contains all weights wn for n ∈ [0, . . . , N ], and β is the
spatial regularization coefficient. Sufficiently large β force the labelling to have
all patterns to be connected.

2.3 BPDL — Alternating minimization

The criterion (5) is minimized alternately with respect to atlas y and weights
w ∈W, (see Algorithm 1).
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(a) (b) (c)

Fig. 3. Random atlas initialization with patch sizes 1 pixel (a), m/2K pixels
(b), and m/K pixels (c), for K = 6 and m = 64 pixels being the image size.

Initialization. We initialize the atlas with randomly labeled patches on a regular
grid, with user-defined sizes; see Fig. 3 for examples.

Update weights W. With the atlas y fixed, we estimate the weights wn for each
image gn independently. It turns out that F (gn,y,w) is minimized with respect
to wl, if the majority of pixels in the pattern l ∈ y agree with the image. We set

wl = JP (g,y, l) ≥ σK where σ = 1 (6)

and P (g,y, l) =

∑
i∈Ω,yi=l

Jgi = 1K∑
i∈Ω,yi=l

Jgi 6= 1K
=

∥∥Jy = lK
∥∥∑

i∈Ω,yi=l
(1− gi)

− 1 (7)

We temporarily reduce σ in the initial stage of the algorithm, otherwise very few
patterns might be selected.

Reinitialize empty patterns. During the weight calculation step, some pattern
may not have been used for any image. This is wasteful, unless the reconstruction
is already perfect, we can always improve it by adding another pattern. We
iterate the following procedure until all K labels are used:

1. find an image gn with the largest unexplained residual Jgn ∧ ¬ĝnK
2. find the largest connected component c of this residual and assign label l /∈ y;
3. calculate weights wnl for the new label l for all images gn ∈ G using (6).

Update of atlas y. With the weight vectors W fixed, finding the atlas y is
a discrete labeling problem. We can rewrite the criterion in (5) as

1

N

∑
i∈Ω

∑
n

∣∣∣∣∣gsi −∑
l∈L

ws
l · Jy = lK

∣∣∣∣∣︸ ︷︷ ︸
Ui(yi)

+
∑

i,j∈Ω, i6=j,
d(i,j)=1

Jyi 6= yjK (8)

which can be solved for example with Graph Cut [22] and alpha expansion.
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v0 v1 v2

Fig. 4. Visualisation of the generated atlases for the three created synthetic
datasets containing K = 6 (v0), K = 13 (v1) and K = 23 (v2) patterns, with
image sizes 64× 64 (v0, v1) and 128× 128 (v2) pixels.

3 Experiments

We evaluate the performance (atlas similarity and descriptiveness and elapsed
time) of the algorithm on both synthetic and real images.

3.1 Alternative methods

We have compared our BPDL with the following methods: NMF [16], Fas-
tICA [14], SparsePCA [13] and Dictionary Learning [15] (DL). All methods were
implemented in the scikit-learn2 library.

Binarization of continues components. To obtain a binary atlas y from a con-
tinuous matrix Y ∈ R|Ω|×L, we select the component with a maximal value in
each pixel position i ∈ Ω, i.e.

yi = arg max
l∈L

Y li

3.2 Synthetic dataset

We generated three synthetic datasets (v0, v1, v2) representing already seg-
mented and aligned binary images based on a random atlas and random pattern
weights. The patterns are deformed ellipses. The datasets differ in image size
and the true number of patterns in atlas (see Fig. 4).

Each dataset is further divided into three sub-sets, each containing 1200 input
images (Fig. 5):

1. pure: images generated from equation (2)

2 http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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Fig. 5. We show sample images from the synthetic dataset v2. The tree rows
represents the 3 sub-sets of input images: pure, deformed and deformed with
random binary noise (denoted D&N).

2. deform: pure images (1) independently transformed by a small elastic B-
spline deformation with the maximum amplitude of 0.2m, with m =

√
|Ω|.

3. deform & noise (D&N): deformed images (2) with random binary noise
(randomly flipping 10% pixels).

3.3 Evaluation metrics

Atlas comparison The difference between atlases is given by the Adjusted Rand
Score3 (ARS), which gives similarity value in the range (0, 1), with 1 being
a perfect match.

Reconstruction difference With the estimated atlas y and pattern weights wn ∈
W for each particular image gn ∈ G we reconstruct each input image ĝn (see
eq. (2), Fig. 6), the approximation error is averaged over all images:

R(G,y,W) =
1

N · |Ω|
∑
n

F (gn,y,wn) =
1

N · |Ω|
∑
n

∑
i

|gni − ĝni | (9)

In case of the synthetic datasets we always compare the reconstructed images to
the pure input images.

3.4 Comparison on synthetic datasets

In Table (1) we show the accuracy of reconstructing the atlas (measured by
ARS), the mean approximation error R, and elapsed time for all datasets and
their modifications. The number of patterns was set to the true value K.

3 https://en.wikipedia.org/wiki/Rand_index

https://en.wikipedia.org/wiki/Rand_index
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datasets NMF [16] FastICA [14] sPCA [13] DL [15] BPDL *

v0 (size 64× 64 px, 6 patterns)

pure
ARS 1.0 1.0 0.961 1.0 0.999
diff. 0.0 0.0 0.002 0.0 0.0
time 2.780 168.476 30.842 304.51 6.658

deform
ARS 0.775 0.921 0.769 0.777 0.993
diff. 0.014 0.004 0.0213 0.014 0.0

time [s] 1.697 141.527 22.833 279.87 4.766

D&N
ARS 0.048 0.778 0.002 0.066 0.999
diff. 0.033 0.014 0.033 0.033 0.0

time [s] 2.005 229.47 24.907 598.83 6.774

v1 (size 64× 64 px, 13 patterns)

pure
ARS 1.0 1.0 0.992 0.995 0.999
diff. 0.0 0.0 0.0298 0.019 0.0
time 2.333 340.32 18.291 737.47 6.029

deform
ARS 0.785 0.948 0.780 0.779 0.992
diff. 0.017 0.004 0.029 0.033 0.005

time [s] 4.001 312.18 15.000 700.03 7.561

D&N
ARS 0.091 0.878 0.009 0.0727 0.951
diff. 0.048 0.010 0.061 0.0499 0.003

time [s] 4.490 439.04 11.420 697.599 9.562

v2 (size 128× 128 px, 23 patterns)

pure
ARS 1.0 1.0 0.989 1.0 0.999
diff. 0.0 0.0 0.037 0.0 0.005

time [s] 82.329 5533.4 460.82 14786. 88.260

deform
ARS 0.818 0.846 0.801 0.807 0.970
diff. 0.019 0.015 0.056 0.046 0.004

time [s] 144.10 5683.2 477.47 13619. 165.22

D&N
ARS 0.120 0.612 0.024 0.144 0.877
diff. 0.036 0.036 0.092 0.039 0.013

time [s] 77.399 6912.9 485.44 13729. 289.51

Table 1. Performance comparison on the synthetic datasets. We show the atlas
ARS (Adjusted Rand Score), approximation error R (9), and processing time
in seconds. We colour the best (blue) and the second best (cyan) result. All
experiments were performed on the same computer, in a single thread configu-
ration. The results shows that all methods work well on the ‘pure’ sub-set. For
the deformed and also noise images the best results was obtained by BPDL. The
fastest method was NMF, followed by BPDL.
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(a) (b) (c)

Fig. 6. Visualization of the reconstruction of real images (already showen in
Fig. 1) in three different ways: (a) The input binary segmentation of gene expres-
sion overlapped by the atlas pattern contours. (b) The individual atlas patterns
(in color) with the binary input gene expression segmentation overlaid (black
contour). (c) Used (green) versus unused (red) atlas patterns with contour of
the segmented input expression boundary (black).
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Fig. 7. Presenting estimated atlases by all methods with different number of
estimated patterns K.
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nb. Graph Cut regularization β
K 0.0 0.001 0.1

10

20

30

Fig. 8. Visualization of the estimated atlas for Drosophila images (eye type
imaginal discs) as a function of the number of estimated patterns K and the
Graph Cut regularization parameter β.

We can say that on the ‘pure’ images, all methods work well. In other cases,
the accuracy of our method (as measured by ARS and R) is better. The fastest
method is the NMF (on average twice faster than BPDL) but its results are poor.
On the other hand FastICA gives the second best quality results after BPDL
but is much slower (on average 40 times slower then BPDL).

3.5 Comparison on real images

We applied all methods on segmented gene expressions images of the Drosophila
imaginal discs varying the number of patterns K ∈ {10, 20, 30}. Several recon-
struction examples for BFDL are shown in Fig. 6. Looking at the estimated
atlases (Fig. 7) we found that NMF, FastICA and DL have difficulty to identify
background and often produce very small regions. Example atlases by BFDL on
all four considered disc types are shown in Fig. 9.
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Method
Number of patterns K

Time [min]
10 20 30

NMF [16] 0.0939 0.0823 0.0723 10

FastICA [14] 0.1197 0.0779 0.0485 24

sPCA [13] 0.0476 0.0413 0.0352 477

DL [15] 0.0939 0.0648 0.0596 338

BPDL * 0.0467 0.0395 0.0361 20

Table 2. Reconstruction difference R on real images of imaginal disc (eye type)
by all tested methods for three different assumed numbers of patterns K.

(a) (b)

(c) (d)

Fig. 9. Sample images of each imaginal disc types: wing (a), leg (b), eye (c),
haltere (d) with the atlases estimated by BPDL shown as contour overlays for
number of patterns K = 20.

The effect of the Graph Cut regularization parameter β is shown in Fig. 8.
A value of β = 0.001 was found to perform best by subjective evaluation and it
was used in all other experiments.
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4 Conclusion

This paper addresses automatic image analysis of Drosophila imaginal discs, fo-
cusing on the problem of finding an atlas of atomic gene expression from the
images. Unlike alternative methods, we assume that the atlas and its coeffi-
cients are binary and our proposed method (BPDL) estimates an atlas of binary
patterns directly by an iterative procedure.

On synthetic datasets, BPDL achieves the best overall quality results, with
a very reasonable computational complexity. On real datasets, BPDL produces
similar quality atlas and reconstruction as the SparsePCA method, while being
much faster.

The extracted image labels will be further processed by data mining methods.
The proposed binary pattern dictionary learning can be applied any time a large
set of binary images should be represented by a small dictionary.
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project 14-21421S and by the Grant Agency of the Czech Technical University
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