<p dir="ltr">Maybe you can also use bootstrap method published by Efron? You can see<a href="https://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf"> https://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf</a></p>
<p dir="ltr">It is implemented in resampling module with replacement option, if I can understand.</p>
<p dir="ltr">J.</p>
<div class="gmail_extra"><br><div class="gmail_quote">Dne 1.9.2016 21:46 napsal uživatel "Roman Yurchak" <<a href="mailto:rth.yurchak@gmail.com" target="_blank">rth.yurchak@gmail.com</a>>:<br type="attribution"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">I'm also interested to know if there are any projects similar to<br>
scikit-learn-contrib/forest-<wbr>confidence-interval for linear_model or SVM<br>
regressors.<br>
<br>
In the general case, I think you could get a quick first order<br>
approximation of the confidence interval for your regressor, if you take<br>
the standard deviation of predictions obtained by fitting different<br>
subsets of your data using,<br>
cross_validation.cross_val_<wbr>score( ).std()<br>
with a fixed set of estimator parameters? Or some multiple of it (e.g.<br>
2*std). Though this will probably not match exactly the mathematical<br>
definition of a confidence interval.<br>
--<br>
Roman<br>
<br>
<br>
On 01/09/16 20:32, Dale T Smith wrote:<br>
> There is a scikit-learn-contrib project with confidence intervals for random forests.<br>
><br>
> <a href="https://github.com/scikit-learn-contrib/forest-confidence-interval" rel="noreferrer" target="_blank">https://github.com/scikit-<wbr>learn-contrib/forest-<wbr>confidence-interval</a><br>
><br>
><br>
> ______________________________<wbr>______________________________<wbr>______________________________<br>
> Dale Smith | Macy's Systems and Technology | IFS eCommerce | Data Science and Capacity Planning<br>
> | 5985 State Bridge Road, Johns Creek, GA 30097 | <a href="mailto:dale.t.smith@macys.com">dale.t.smith@macys.com</a><br>
><br>
> -----Original Message-----<br>
> From: scikit-learn [mailto:<a href="mailto:scikit-learn-bounces%2Bdale.t.smith">scikit-learn-bounces+<wbr>dale.t.smith</a>=<a href="mailto:macys.com@python.org">macys.com@python.<wbr>org</a>] On Behalf Of Daniel Seeliger via scikit-learn<br>
> Sent: Thursday, September 1, 2016 2:28 PM<br>
> To: <a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
> Cc: Daniel Seeliger<br>
> Subject: [scikit-learn] Confidence Estimation for Regressor Predictions<br>
><br>
> ⚠ EXT MSG:<br>
><br>
> Dear all,<br>
><br>
> For classifiers I make use of the predict_proba method to compute a Gini coefficient or entropy to get an estimate of how "sure" the model is about an individual prediction.<br>
><br>
> Is there anything similar I could use for regression models? I guess for a RandomForest I could simply use the indiviual predictions of each tree in clf.estimators_ and compute a standard deviation but I guess this is not a generic approach I can use for other regressors like the GradientBoostingRegressor or a SVR.<br>
><br>
> Thanks a lot for your help,<br>
> Daniel<br>
> ______________________________<wbr>_________________<br>
> scikit-learn mailing list<br>
> <a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
> <a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
><br>
> * This is an EXTERNAL EMAIL. Stop and think before clicking a link or opening attachments.<br>
> ______________________________<wbr>_________________<br>
> scikit-learn mailing list<br>
> <a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
> <a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
><br>
<br>
______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
</blockquote></div></div>