<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    I want to join Gaël in thanking you for saying thanks.<br>
    It's great to see appreciation of the work that the scientific
    python community does.<br>
    I don't think I've seen anyone cite scipy in their research work,
    even though it is the backbone for so many papers.<br>
    It's important for us that the academic environment recognizes
    software contributions, because many<br>
    of us rely on academic funding to do this work.<br>
    <br>
    Best,<br>
    Andy<br>
    <br>
    <div class="moz-cite-prefix">On 03/22/2017 01:10 AM, Brown J.B.
      wrote:<br>
    </div>
    <blockquote
cite="mid:CAJe_vxBXAwNGzd=4pEn++ANqk8BQSrGF1CA9KRXvvaPATNAXgA@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>
          <div>
            <div>
              <div>
                <div>
                  <div>
                    <div>
                      <div>
                        <div>
                          <div>
                            <div>
                              <div>
                                <div>
                                  <div>
                                    <div>To all organizers, developers,
                                      and maintainers involved in the
                                      Scikit-learn project,<br>
                                      <br>
                                    </div>
                                    I would like to share a recent
                                    article that researchers from MIT,
                                    ETH, and Kyoto University (myself)
                                    have published about building
                                    efficient models for drug discovery
                                    and pharmaceutical data mining.<br>
                                    <br>
                                  </div>
                                  In short, it demonstrates through
                                  replicate experiment that neither big
                                  data nor complex AI such as deep
                                  learning are necessary for efficient
                                  drug discovery, and that active
                                  learning can guide/assist decision
                                  making processes in the real world.<br>
                                  <br>
                                </div>
                                The paper's success is underpinned by
                                the use of Scikit-learn's
                                RandomForestClassifier implementation
                                combined with other techniques developed
                                in the work.<br>
                              </div>
                              Therefore, it is a by-product of the
                              volunteerism, hard work, and dedication by
                              those involved in scikit-learn.<br>
                              <br>
                            </div>
                            As the senior author of this study, I wish
                            to share my great appreciation for your
                            efforts.<br>
                          </div>
                          While I am strongly limited in time and can
                          barely contribute to this community, I cannot
                          thank all of you enough for your work - it has
                          made an impact.<br>
                          <br>
                        </div>
                        We are working on theoretical extensions of the
                        work now, as well as pushing the technology
                        forward in applied discovery sciences (in
                        agricultural, pharmaceutical, and medical
                        areas).  In the theory and real-world
                        applications, scikit-learn is indispensible.<br>
                        <br>
                      </div>
                      We have made the paper open access, and hope that
                      such will inspire this community as well as those
                      in applied sciences.<br>
                      You will see that the open source software
                      community has been listed in the Acknowledgments.<br>
                    </div>
                    Certainly, we would welcome even the most casual of
                    comments about the paper.<br>
                  </div>
                  <div><br>
                  </div>
                  The paper can be retrieved from here:<br>
                  <a moz-do-not-send="true"
                    href="http://www.future-science.com/doi/abs/10.4155/fmc-2016-0197">http://www.future-science.com/doi/abs/10.4155/fmc-2016-0197</a><br>
                  <br>
                </div>
                With kindest regards and sincere appreciation,<br>
              </div>
              J.B. Brown<br>
            </div>
            Kyoto University Graduate School of Medicine<br>
            Junior Associate Professor and Principal Investigator<br>
          </div>
          <a moz-do-not-send="true"
            href="http://statlsi.med.kyoto-u.ac.jp/%7Ejbbrown">http://statlsi.med.kyoto-u.ac.jp/~jbbrown</a><br>
          <br>
        </div>
        PS - To those of you involved in the matplotlib, scipy, and
        numpy projects, your forwarding of this to those projects would
        be appreciated.  They were also critical.<br>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
scikit-learn mailing list
<a class="moz-txt-link-abbreviated" href="mailto:scikit-learn@python.org">scikit-learn@python.org</a>
<a class="moz-txt-link-freetext" href="https://mail.python.org/mailman/listinfo/scikit-learn">https://mail.python.org/mailman/listinfo/scikit-learn</a>
</pre>
    </blockquote>
    <br>
  </body>
</html>