<div dir="ltr">Well, that will depend on how your estimator works. But in general you are right - if you assume that samples 4 to N are weighted with the same weight (e.g. 1) in both cases, then the sample 3 will be relatively less important in the larger training set.</div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Jul 28, 2017 at 1:06 PM, Abhishek Raj via scikit-learn <span dir="ltr"><<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="auto"><span style="font-family:sans-serif;font-size:13.696px">Hi Michael, thanks for the response. Based on what you said, is it correct to assume that weights are relative to the size of the data set? Eg</span><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">If my dataset size is 200 and I have 1 of sample 1, 10 of sample 2 and 100 of sample 3, sample 3 will be given a lot of focus during training because it exists in majority, but if my dataset size was say 1 million, these weights wouldn't really affect much?</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px"><br></div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">Thanks,</div><div dir="auto" style="font-family:sans-serif;font-size:13.696px">Abhishek</div></div><div class="HOEnZb"><div class="h5"><div class="gmail_extra"><br><div class="gmail_quote">On Jul 28, 2017 10:41 PM, "Michael Eickenberg" <<a href="mailto:michael.eickenberg@gmail.com" target="_blank">michael.eickenberg@gmail.com</a>> wrote:<br type="attribution"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi Abhishek,<div><br></div><div>think of your example as being equivalent to putting 1 of sample 1, 10 of sample 2 and 100 of sample 3 in a dataset and then run your SVM.</div><div>This is exactly true for some estimators and approximately true for others, but always a good intuition.</div><div><br></div><div>Hope this helps!</div><div>Michael</div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Jul 28, 2017 at 10:01 AM, Abhishek Raj via scikit-learn <span dir="ltr"><<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi,<div><br></div><div>I am using one class svm for binary classification and was just curious what is the range/scale for sample weights? Are they normalized internally? For example -</div><div><br></div><div>Sample 1, weight - 1</div><div>Sample 2, weight - 10</div><div>Sample 3, weight - 100</div><div><br></div><div>Does this mean Sample 3 will always be predicted as positive and sample 1 will never be predicted as positive? What about sample 2?</div><div><br></div><div>Also, what would happen if I assign a high weight to majority of the samples and low weights to the rest. Eg if 80% of my samples were weighted 1000 and 20% were weighted 1.</div><div><br></div><div>A clarification or a link to read up on how exactly weights affect the training process would be really helpful.</div><div><br></div><div>Thanks,</div><div>Abhishek</div></div>
<br>______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailma<wbr>n/listinfo/scikit-learn</a><br>
<br></blockquote></div><br></div>
<br>______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailma<wbr>n/listinfo/scikit-learn</a><br>
<br></blockquote></div></div>
</div></div><br>______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
<br></blockquote></div><br></div>