<div dir="ltr">We are excited to announce the new release of the scikit-learn-contrib imbalanced-learn, already available through conda and pip (cf. the installation page <a href="https://tinyurl.com/y92flbab">https://tinyurl.com/y92flbab</a> for more info)<br><b></b><div><br></div><div>Notable add-ons are:</div><div><br></div><div>* Support of sparse matrices</div><div>* Support of multi-class resampling for all methods</div><div>* A new BalancedBaggingClassifier using random under-sampling chained with the scikit-learn BaggingClassifier<br></div><div>* Creation of a didactic user guide</div><div>* New API of the ratio parameter to fit the needs of multi-class resampling<br></div><div>* Migration from nosetests to pytest<br></div><div><br></div><div>You can check the full changelog at:</div><div><a href="http://contrib.scikit-learn.org/imbalanced-learn/stable/whats_new.html#version-0-3">http://contrib.scikit-learn.org/imbalanced-learn/stable/whats_new.html#version-0-3</a></div><div><br></div><div>A big thank you to contributors to use, raise issues, and submit PRs to imblearn.<br></div><div>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>Guillaume Lemaitre</div></div></div></div></div></div></div>
</div></div>