<div dir="ltr"><div><div>Interesting project!<br><br></div>BTW, do you know about dask-ml [1]? <br><br></div>It might be interesting to think about generalizing the input validation of fit and predict / transform as a private method of the BaseEstimator class instead of directly calling into sklearn.utils.validation functions so has to make it easier for third party projects such as sklearn-xarray and dask-ml to subclass and override those methods to allow for specific input data-structure without converting everyting to a numpy array. <br><div><div><br>[1] <a href="https://github.com/dask/dask-ml">https://github.com/dask/dask-ml</a><br><br><br></div></div></div><div class="gmail_extra"><br><div class="gmail_quote">2017-12-04 15:21 GMT+01:00 Peter Hausamann <span dir="ltr"><<a href="mailto:peter.hausamann@tum.de" target="_blank">peter.hausamann@tum.de</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="color:rgb(33,33,33);font-size:13px">Hi all,</div><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px">I'd like to announce<span class="m_-1970685300861771813inbox-inbox-Apple-converted-space"> </span><b>sklearn-xarray</b>, a new package that provides a scikit-learn interface for xarray users. For those not familiar with xarray (<a href="http://xarray.pydata.org/" target="_blank">http://xarray.pydata.org</a>), it is a "pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays".</div><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px">The package makes it possible to apply sklearn estimators to xarray DataArrays and Datasets while keeping the labels (called coordinates in xarray) intact whereever possible.</div><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px">You can install the package via pip:</div><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px"><font face="monospace">pip install sklearn-xarray</font></div><div style="color:rgb(33,33,33);font-size:13px"><br>To get started, you can:</div><div style="color:rgb(33,33,33);font-size:13px"><ul><li>read the documentation: <a href="https://phausamann.github.io/sklearn-xarray" target="_blank">https://<wbr>phausamann.github.io/sklearn-<wbr>xarray</a> and </li><li>check out the repository: <a href="https://github.com/phausamann/sklearn-xarray" target="_blank">https://github.<wbr>com/phausamann/sklearn-xarray</a></li></ul></div><div style="color:rgb(33,33,33);font-size:13px">Note that the package is still in a very early development stage and there will probably be some major API changes in upcoming releases. Most notably, I'd like to replicate the complete sklearn module structure at some point by decorating all available estimators with the necessary wrappers.</div><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px">Feedback of any kind is appreciated.</div><span class="HOEnZb"><font color="#888888"><div style="color:rgb(33,33,33);font-size:13px"><br></div><div style="color:rgb(33,33,33);font-size:13px">Peter</div><div style="color:rgb(33,33,33);font-size:13px"><br></div></font></span></div>
<br>______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
<br></blockquote></div><br><br clear="all"><br>-- <br><div class="gmail_signature" data-smartmail="gmail_signature">Olivier<br><a href="http://twitter.com/ogrisel" target="_blank">http://twitter.com/ogrisel</a> - <a href="http://github.com/ogrisel" target="_blank">http://github.com/ogrisel</a></div>
</div>