<div dir="ltr">It includes non-core points, but not points that are out of eps from any core point. You can modify eps and min_samples. But perhaps you should just choose a different clustering algorithm if this is behaviour you absolutely do not want.</div><div class="gmail_extra"><br><div class="gmail_quote">On 30 January 2018 at 23:24, AMIR SHANEHSAZZADEH <span dir="ltr"><<a href="mailto:amir.p.shanehsazzadeh@umasd.net" target="_blank">amir.p.shanehsazzadeh@umasd.net</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><span style="font-size:12.8px">Hello,</span><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">I am working with the latest implementation of DBSCAN. I believe that scikit-learn's implementation does not include non-core points in clusters. This results in border points not being included in clusters. Is there any way to remedy this issue so that border points are included in their respective clusters? Do you know what modifications I would need to make the code?</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Thank you,</div><div style="font-size:12.8px">Amir Shanehsazzadeh</div></div>
<br>______________________________<wbr>_________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/<wbr>mailman/listinfo/scikit-learn</a><br>
<br></blockquote></div><br></div>