<div dir="ltr"><div><div><div><div><div><div><div>Hi,<br><br></div>I am using KMeans for clustering purpose on my data.<br><br></div>I am interested in the distance function used by KMeans for creating clusters and determining the cluster points.<br></div><div>I have read the <a href="http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans">http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans</a><br></div><div>documentation but was not able to find the method used.<br></div><div><br></div>If possible please give a example as to how it is done.<br><br>from sklearn.cluster import KMeans<br>KMeans(max_iter=4,n_clusters=10,n_init=10).fit(X)<br><br></div>where X has 14 features lets say for example<br></div>[0,
0,
2,
8,
0,
0,
3,
16,
8,
39,
1,
0,
0,
2]<br>[0,
0, 3, 9,
0,
0,
3,
1,
8, 9,
1,
0,
0, 1]<br><br></div>Also if you can show me how KMeans can be implemented on my data it would certainly help.<br><br></div>-- <br><div><div><div><div><div><div><div><div><div><div><div><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>Regards<br></div></div></div></div></div>
</div></div></div></div></div></div></div></div></div></div></div></div>