<div dir="ltr"><div>Hi</div><div><br></div><div>I would appreciate if you could let me know what is the best way to categorize the approaches which have been developed to deal with imbalance class problem?</div><div><p><strong>This <a href="https://www.sciencedirect.com/science/article/pii/S0020025513005124" rel="nofollow noreferrer"><font color="#0066cc">article</font></a> categorizes them into:</strong></p><ol><li>Preprocessing: includes oversampling, undersampling and hybrid methods,</li><li>Cost-sensitive learning: includes direct methods and meta-learning which the latter further divides into thresholding and sampling,</li><li>Ensemble techniques: includes cost-sensitive ensembles and data preprocessing in conjunction with ensemble learning.</li></ol><p><strong>The <a href="https://dl.acm.org/citation.cfm?id=2907070" rel="nofollow noreferrer"><font color="#0066cc">second</font></a> classification:</strong></p><ol><li>Data Pre-processing: includes distribution change and weighting the data space. One-class learning is considered as distribution change.</li><li>Special-purpose Learning Methods</li><li>Prediction Post-processing: includes threshold method and cost-sensitive post-processing</li><li>Hybrid Methods:</li></ol><p><strong>The third <a href="https://link.springer.com/article/10.1007/s13748-016-0094-0" rel="nofollow noreferrer"><font color="#0066cc">article</font></a>:</strong></p><ol><li>Data-level methods</li><li>Algorithm-level methods</li><li>Hybrid methods</li></ol><p>The last classification also considers output adjustment as an independent approach.</p><p>Could you please let me know the class-weight in the sklearn's classifiers e.g., logistic regression is classified into which category? Is it true to say:</p><p>In case of the first categorization, it falls into cost-sensitive learning</p><p>In case of the second taxonomy, it would be classified into the third category i.e., cost-sensitive post-processing</p><p>In case of the third classification, it should fall into algorithm level <span></span></p><p>Best regards,</p></div></div>