<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    There's some stuff already:<br>
    <a class="moz-txt-link-freetext" href="https://github.com/SciRuby/">https://github.com/SciRuby/</a><br>
    <br>
    And in terms of strategy:<br>
    No, you can go estimator by estimator and at some point implement
    cross-validation and grid-search and pipelines and metrics pretty
    independently.<br>
    <br>
    It looks like daru is written in ruby which I expect to be too slow.<br>
    nmatrix is written in C++, so I guess you'd have to write many of
    the algorithms in C++.<br>
    <br>
    At that point it might be easier to wrap an existing C++ library
    like mlpack or shogun.<br>
    <br>
    <div class="moz-cite-prefix">On 2/5/19 6:12 AM, Joel Nothman wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAAkaFLVROW7tYuJh5gyiuZX5qC8391Cc_L4g+aAUp_B31+-dFA@mail.gmail.com">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <div dir="ltr">
        <div dir="ltr">
          <div>If you count things in Scipy and NumPy (and Joblib and
            Cython?) that Scikit-learn depends on and which may be
            lacking or hard to find in SciRuby, it's much much more than
            39 years. PyCall, and potentially some Scikit-learn-specific
            wrappers around it, seems a much more sensible approach.</div>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <pre class="moz-quote-pre" wrap="">_______________________________________________
scikit-learn mailing list
<a class="moz-txt-link-abbreviated" href="mailto:scikit-learn@python.org">scikit-learn@python.org</a>
<a class="moz-txt-link-freetext" href="https://mail.python.org/mailman/listinfo/scikit-learn">https://mail.python.org/mailman/listinfo/scikit-learn</a>
</pre>
    </blockquote>
    <br>
  </body>
</html>