<div><div dir="auto">Thank you, Nicolas. </div></div><div dir="auto">Huan</div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Feb 15, 2019 at 7:52 PM Huan Tran <<a href="mailto:huantd@gmail.com">huantd@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr"><div>Dear community,</div><div><br></div><div>I did a very small pca analysis on a 3D data to print out the explained_variance. I found that with scikit-learn 0.18.1 AND 0.20.2, the results are significantly different. In particular, for 0.18.1 I got<br></div><div></div><div>+3.875925353581E+00 +3.270175297443E+00 +2.207814537475E+00</div><div><br></div><div>and with 0.20.2, I got</div><div>+4.651110424297E+00 +3.924210356932E+00 +2.649377444970E+00<br></div><div><br></div><div>Could anyone has a hint on what is going on? FYI, my data and code are enclosed. Many thanks. <br></div><div><br></div><div>Huan<br></div><div> </div><div>My data is</div><div><br></div><div> -3.117642E+00, 1.453819E+00, -7.952874E-02<br> 3.081224E+00, 1.453819E+00, -7.952874E-02<br> 1.376932E-01, -2.491454E+00, -1.908521E-01<br> 9.578602E-02, 3.632759E+00, -1.908521E-01<br> -1.238644E-01, 5.396424E-02, -3.147031E+00<br> 6.335262E-01, 1.393937E+00, 2.500474E+00<br></div><div><br></div><div>and my code is <br></div><div><br></div><div>import pandas as pd<br>import numpy as np<br>from sklearn import decomposition<br><br>df = pd.read_csv('data', delimiter=',', header=None)<br>data = np.array(df)<br><br>X = data[:,:]<br>data_size = X.shape[0]<br>feature_dim = X.shape[1]<br><br>print X<br><br>pca = decomposition.PCA(n_components=feature_dim)<br>X_transformed = pca.fit_transform(X)<br>print "%+4.12E %+4.12E %+4.12E" %(pca.explained_variance_[0], pca.explained_variance_[1], pca.explained_variance_[2])<br><br></div><div><br></div></div></div></div></div></div></div>
</blockquote></div></div>