<div dir="ltr">oh sorry, I see now that you mention about evaluating.<br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, 3 May 2019 at 10:12, Guillaume LemaƮtre <<a href="mailto:g.lemaitre58@gmail.com">g.lemaitre58@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">You can always predict incrementally by predicting on batches of samples.<br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, 3 May 2019 at 10:05, lampahome <<a href="mailto:pahome.chen@mirlab.org" target="_blank">pahome.chen@mirlab.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">I see some algo can cluster incrementally if dataset is too huge ex: minibatchkmeans and Birch.<div><br></div><div>But is there any way to evaluate incrementally?</div><div><br></div><div>I found silhouette-coefficient and Calinski-Harabaz index because I don't know the ground truth labels.</div><div>But they can't evaluate incrementally.</div></div>
_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div><br clear="all"><br>-- <br><div dir="ltr" class="gmail-m_-6725390898813994208gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>Guillaume Lemaitre<br>INRIA Saclay - Parietal team<br>Center for Data Science Paris-Saclay<br><a href="https://glemaitre.github.io/" target="_blank">https://glemaitre.github.io/</a></div></div></div></div></div></div></div>
</blockquote></div><br clear="all"><br>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div>Guillaume Lemaitre<br>INRIA Saclay - Parietal team<br>Center for Data Science Paris-Saclay<br><a href="https://glemaitre.github.io/" target="_blank">https://glemaitre.github.io/</a></div></div></div></div></div></div></div>