<div dir="ltr"><div>Dear Milton,</div><div><br></div><div>It is just my opinion based on many experiences, but if you want to stress-test your estimator, make your test set at least as big as, if not bigger than, the training set.</div><div><br></div><div>Sincerely,</div><div>J.B.<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">2019年7月22日(月) 22:18 Milton Pifano <<a href="mailto:milton.pifanos@gmail.com">milton.pifanos@gmail.com</a>>:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-size:large">Dear scikit-learn subscribers.</div><div class="gmail_default" style="font-size:large"><br></div><div class="gmail_default" style="font-size:large">I am working on a multiclass classificacition project and I have found many resources about how to deal with an imbalaced dataset for trainning, bu I have not been able to find any reference on the test dataset size.<br></div><div class="gmail_default" style="font-size:large">Can anyone send some references?</div><div class="gmail_default" style="font-size:large"><br></div><div class="gmail_default" style="font-size:large">Thanks,</div><div class="gmail_default" style="font-size:large">Milton Pifano</div></div>
_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div>