<div dir="auto">Okay, so it's sampling with replacement with same size of the original dataset. That mean that some of the samples would be repeated for each tree</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, May 10, 2020, 19:40 Fernando Marcos Wittmann <<a href="mailto:fernando.wittmann@gmail.com">fernando.wittmann@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="auto">My question is why the full dataset is being used as default when building each tree. That's not random forest. The main point of RF is to build each tree with a subsample of the full dataset </div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, May 10, 2020, 09:50 Joel Nothman <<a href="mailto:joel.nothman@gmail.com" target="_blank" rel="noreferrer">joel.nothman@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">A bootstrap is very commonly a random draw with replacement of equal size to the original sample.</div>
_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" rel="noreferrer noreferrer" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer noreferrer noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div>
</blockquote></div>