
Python Curses Programming
HOWTO

Original text by:

Pradeep Pradala

Python Translation by:

Alan J Gauld

Table of Contents
Revision History..v

Introduction...vii

The Translation to Python...vii

Purpose/Scope of the document..vii

About the Original Document and Programs...viii

Copyright..ix

Programming in a Terminal..x

What is NCURSES?...x

What We Can Do with curses?...xi

Where to get it...xii

1 Hello World !!!...1

1.1 Using the curses module...1

1.2 Dissection..1

1.3 About initscr()...1

1.4 The mysterious refresh()...2

1.5 Reading character input...3

1.6 About endwin()..3

2 Initialization...5

2.1 raw() and cbreak()...5

2.2 echo() and noecho()...5

2.3 keypad()...6

2.4 halfdelay()...6

2.5 Miscellaneous Initialization Functions..6

2.6 An Example...6

2.7 A Word about Windows...7

2.8 The curses.wrapper() Function...8

3 Output Functions...9

3.1 addch() Method...9

3.2 addstr() Method..10

3.3 insch() Method..11

3.4 inssttr() Method..11

3.5 A Word of Caution...11

ii

4 Input functions...13

4.1 getch() category of methods...13

4.2 getstr() category of methods...14

4.3 An Example...14

4.4 Reading from the Screen..15

5 Attributes...17

5.1 The Details..18

5.2 attron() vs attrset()..19

5.3 attr_get()...19

5.4 chgat() functions...20

6 Windows...23

6.1 The Basics...23

6.2 Let there be a Window!!!..23

6.3 Explanation...25

6.4 Some Other Stuff in the Example..26

6.5 Other Border Functions..26

6.6 Sub-Windows...28

7 Colors...31

7.1 The Basics...31

7.2 Changing Color Definitions...32

7.3 Color Content..33

8 Interfacing with the Keyboard...35

8.1 The Basics...35

8.2 Simple Key Usage...36

9 Interfacing with the Mouse..39

9.1 The Basics...39

9.2 Getting Events...40

9.3 Putting it all Together...41

9.4 Miscellaneous Functions...44

10 Screen Manipulation..45

10.1 getyx() functions..45

10.2 Screen Dumping..45

10.3 Window Dumping..45

11 Miscellaneous features..49

iii

11.1 curs_set()...49

11.2 Temporarily Leaving Curses Mode...49

11.3 ACS_ Variables..50

11.4 And finally...50

12 curses.panel module...51

12.1 The Basics...51

12.2 Panel Window Browsing..53

12.3 Using User Pointers..55

12.4 Moving and Resizing Panels...55

12.5 Hiding and Showing Panels..60

12.6 panel_above() & panel_below() Methods..62

13 Tools and Widget Libraries...63

13.1 curses.textpad...63

13.2 dialog...64

14 A Case Study – The Totalizer...67

14.1 Totalizer Design Summary..67

14.2 The Cell Class..68

14.3 The Grid Class...69

14.4 The SummingGrid Class..73

14.5 The Totalizer Class..73

14.6 The Driver Code..76

14.7 Things to Consider..77

15 Just For Fun !!!..79

15.1 The Game of Life...79

15.2 Magic Square..79

15.3 Towers of Hanoi..79

15.4 Queens Puzzle...80

15.5 Shuffle...80

15.6 Typing Tutor..80

16 References...81

16.1 Online..81

16.2 Books...81

iv

Revision History

Python Curses Programming HOWTO

by Alan J Gauld

alan.gauld@yahoo.co.uk

Issue 1.0 - 2020-10-27

Revised by A J Gauld

Fixed typos and minor tweaks following final review.

Revision 0.4 – 2020-08-18

Revised by AJ Gauld

Tidied up and issued for final review.

Revision 0.3 – 2020-08-12

Revised by AJ Gauld

Editing tweaks and corrections following reviews from Python mailing list.
Reformatted pages to book style with headers/footers/chapter heads etc.
Significant editing of text descriptions to better fit the Python code.

Extended subwindow example to better demonstrate relationships of different
window types.

Added a grid based case-study chapter to pull everything together within a
larger context using OOP application design.

Revision 0.2 - 2020-06-12

Revised by: AJ Gauld

Still retaining as much as possible of the original material by Pradeep Padala
but removing irrelevant topics and references for the Python curses module.

New sections added for subwindows, the insertion and screen reading
operations and the Python wrapper function and the textpad widget.

Submitted to Python mailing list for review and feedback.

Revision 0.1 – 2020-05-15

Revised by: AJ Gauld

Translation to the Python curses library by Alan Gauld

v

mailto:alan.gauld@yahoo.co.uk

Most text as-is, code translated to Python. Irrelevant C stuff deleted.

Based on Revision 1.9 of the original document. See the original for full
change history prior to R1.9.

Send comments on the Python translation to this address
alan.gauld@yahoo.co.uk

vi

Introduction
The Translation to Python
This document is a conversion of the Linux HOWTO document on
programming with ncurses by Pradeep Pradala.

https://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/

Ncurses is a library used to control cursor movement as well as enabling color
and mouse control and even multiple windows, all within a traditional terminal
environment.

Ncurses is written in C but a wrapper has been provided for the Python
language and is included in the Python Standard Library for Unix-like
distributions as the curses module. While the module covers the majority of
the ncurses library functions there are a few areas where it does not follow
the C version, since Python provides superior facilities within the language.
This document takes account of those changes and explains the Pythonic
alternatives. There are also a few lesser used C functions that do not appear
in the Python module, although they can usually be worked around. One
example, the missing get_attr() function, is covered in the text.

The curses module documentation within the Python Standard Library is
primarily a reference and not helpful to those with no experience in using
curses. This is largely because the module is just a thin wrapper over the C
library and the documentation merely indicates which of the library functions
are available within Python and their function signature. The user is assumed
to already be familiar with the C version of curses and its usage.

Although several online tutorials already exist, including a fairly short Python
How-To guide, none are as complete as Pradeep’s Linux HOWTO. I therefore
took it upon myself to create a translation of his document into Python.
Initially I tried to make minimal changes to Pradeep’s text but it became
obvious that the differences in the libraries are more than superficial and a
significant amount of rewriting would be necessary. As a result the final
document retains Pradeep’s structure and example programs (while adding a
few extra examples) but most of the text has been rewritten to suit the Python
implementation of curses.

Purpose/Scope of the document
This document is intended to be an "All in One" guide for programming with
Python curses and its sister modules.

vii

https://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/

We graduate from a simple "Hello World" program to more complex multi-
window manipulation. No prior experience in curses is assumed. The writing
is informal, but a lot of detail is provided for each of the examples. It is
assumed that the reader is already experienced in regular Python and no
discussion is made of standard Python language features or idioms.

About the Original Document and Programs
All the programs in the original document are available in zipped form at the
Linux Documentation Project web site. Instructions on how to build and run
them are in the orignal document along with a file structure map.

Various formats of the original document exist

 Acrobat PDF Format

 PostScript Format

 Multi-page HTML

 Single-page HTML

Much of the credit must go to Pradeep and his original collaborators. I have
simply translated the code and updated the text consistent with the changes
to the code and programming environment and added a couple of new
sections more relevant to Python.

viii

http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/ncurses_programs.tar.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/NCURSES-Programming-HOWTO.html
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html/NCURSES-Programming-HOWTO-html.tar.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html/NCURSES-Programming-HOWTO-html.tar.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html/NCURSES-Programming-HOWTO-html.tar.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/ps/NCURSES-Programming-HOWTO.ps.gz
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/NCURSES-Programming-HOWTO.pdf
http://www.tldp.org/

Copyright
Python Translation Copyright © 2020 by Alan J Gauld

Original Copyright © 2001 by Pradeep Padala.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, distribute with modifications,
sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ABOVE
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders
shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization.

ix

Programming in a Terminal
This section covers some of the historical background to the curses
system. If you are impatient to get started you can safely jump ahead to
Section 1 and dive right in. If you like to understand the background to
things then carry on reading.

In the early days of teletype (TTY) and video display terminals (VDT),
terminals were located away from computers and were connected to them
through serial cables. The terminals could be controlled by sending particular
sequences of bytes. All the terminal’s capabilities (such as moving the cursor
to a new location, erasing part of the screen, scrolling the screen, changing
modes etc.) could be controlled by such a series of bytes. These control
sequences are usually called “escape sequences”, because they start with an
escape (0x1B) character. Even today, with proper emulation, we can send
escape sequences to the emulator and achieve the same effect on a terminal
window.

Suppose you wanted to print a line in color. Try typing this on your console:

echo "^[[0;31;40mIn Color"

The first character is an escape character, which looks like two characters ^
and [. To be able to type it, you have to press CTRL+V and then the ESC key.
All the others are normal printable characters.

You should be able to see the string "In Color" in red. If it stays that way then
revert back to the original mode by typing this:

echo "^[[0;37;40m"

Now, what do these magic characters mean? Difficult to comprehend? They
might even be different for different terminals. So the designers of UNIX
invented a mechanism named termcap. It is a file that lists all the capabilities
of a particular terminal, along with the escape sequences needed to achieve a
particular effect. Later this was replaced by terminfo. Without delving too
much into details, this mechanism allows application programs to query the
terminfo database and obtain the control characters to be sent to a particular
terminal or terminal emulator for a given effect.

What is NCURSES?
You might be wondering what the import of all this technical gibberish is. In
the above scenario, every application program is supposed to query the
terminfo and perform the necessary stuff (sending control characters etc.). It
soon became difficult to manage this complexity and this gave birth to curses.
The name curses is a pun on the phrase "cursor optimization". The curses
library forms a wrapper around working with raw terminal codes, and
provides a highly flexible and efficient API (Application Programming
Interface). It provides functions to move the cursor, create windows, produce

x

colors, play with the mouse etc. The application programs need not worry
about the underlying terminal capabilities. The original library was developed
at Berkely as part of BSD Unix. AT&T later developed their own version for
SystemVR2 Unix. In 1993 a free-software clone was developed and released as
ncurses under the auspices of the GNU project.

https://www.gnu.org/philosophy/free-sw.html

In short, ncurses is a library of functions that manages an application's display
on character based terminals. The terms curses and ncurses are often used
interchangeably.

A detailed history of ncurses can be found in the NEWS file from the source
distribution. The current package is maintained by Thomas Dickey. You can
contact the maintainers at bug-ncurses@gnu.org.

The Python wrapper around the ncurses library is part of the Python Standard
Library on Unix-like distributions of Python. It translates Python function and
method calls into calls to the underlying C library. Ncurses must also be
installed on the host machine alongside Python.

What We Can Do with curses?
Curses not only creates a wrapper over terminal capabilities, but also gives a
robust framework to create a nice looking UI (User Interface) in text mode. It
provides functions to create windows etc. Its sister modules, curses.panel,
curses.ascii, curses.textpad and dialog (a third party module) provide
extensions to the basic curses library. One can create applications that
contain multiple windows, panels and dialogs. Windows can be managed
independently, can provide 'scrollability' and can even be hidden.

Panels extend the capabilities of ncurses to deal with overlapping and stacked
windows. The textpad widget provides a minimal multi-line text editing control
with emacs-like key bindings. The dialog module provides a set of standard
dialogs which can be accessed from curses programs (as well as from regular
Python CLI applications).

The ascii module is not covered here but provides capabilities to translate
curses character codes into the more commonly used ASCII character set as
well as functions to check for membership of various sets (such as control
characters etc).

These are just some of the basic things we can do with curses. As we move
along, we will see most of the capabilities of these modules.

xi

https://www.gnu.org/philosophy/free-sw.html

Where to get it
All right, now that you know what you can do with curses, you must be raring
to get started. The ncurses C library is usually shipped with your installation.
In case you don't have the library or want to compile it on your own, you can
fetch it from:

ftp://ftp.gnu.org/pub/gnu/ncurses/ncurses.tar.gz

The Python curses package should be included in the standard library
installed with Python (except on Windows). You can check whether it is there
by running, at the Python interactive prompt:

>>> import curses

If there are no error messages then it is there and all is well. If not then you
will need to find a copy and download it into your Python library.

Note: For Windows users there are at least two ports of Python curses
available but my personal preference is to use the Cygwin package which
includes curses in its Python bundle along with a suitable terminal emulator
and bash shell.

xii

ftp://anonymous@ftp.gnu.org/pub/gnu/ncurses/ncurses.tar.gz

1 Hello World !!!
Welcome to the world of curses. Before we plunge into the module and look
into its various features, let's write a simple program and say hello to the
world.

1.1 Using the curses module
To use curses module functions, you have to import curses into your
programs.

import curses

You may want to use an alias to reduce typing:

import curses as cur

Example 1. The Hello World !!! Program

import curses as cur

scr = cur.initscr() # Start curses mode
scr.addstr("Hello World !!!") # Print Hello World
scr.refresh() # Print it on to the real screen
scr.getch() # Wait for user input
cur.endwin() # End curses mode

1.2 Dissection
The above program prints "Hello World !!!" to the screen and exits. This
program shows how to initialize curses and do screen manipulation and end
curses mode. Let's dissect it line by line.

1.3 About initscr()
The function initscr() initializes the terminal in curses mode. In some
implementations, it clears the screen and presents a blank screen. To do any
screen manipulation using curses package this has to be called first. This
function initializes the curses system and allocates memory for our present

1

NCURSES Programming HOWTO

window, which is the entire terninal screen (often called stdscr in curses
documentation) and some other data-structures. (Under extreme cases this
function might fail due to insufficient memory to allocate memory for curses
library's data structures.) It returns a new Window object representing
stdscr. You should note that in C curses there is an actual variable called
stdscr that you can pass to functions that require a window argument. In
Python things are slightly different and initscr() returns a window object
which we can call anything we like. In this document I use the name scr, but
you can use any name you like. However, the concept of stdscr as a window
encompassing the whole available terminal space is important in curses so
you will see references to stdscr throughout the text.

After this is done, we can do a variety of initializations to customize our curses
settings. These details will be explained later . For now we will restrain
ourselves to the simplest case and only use initscr().

1.4 The mysterious refresh()
The next line scr.addstr() prints the string "Hello World !!!" on to the
screen. This function can take various forms as we will see later. In its basic
form as seen here it prints the data on a window at the current (y,x)
coordinates. Curses is unusual in that it always places the y (row number)
coordinate before the x (column number). The coordinates count from zero in
both cases.

Notice that addstr() is a method of the window object returned by
initscr(). In Python all the curses functions are either module level
functions or methods of the Window class.

Since we haven’t yet moved the cursor anywhere our present co-ordinates are
at (0,0), the string is therefore printed at the top-left corner of the window.

This brings us to that mysterious scr.refresh(). When we called
scr.addstr() the data is actually written to a virtual window, which is not
automatically written to the screen. The job of scr.addstr() is to update a
few flags and data structures and write the data to a buffer. In order to show
it on the screen, we need to call scr.refresh() and tell the curses system to
dump the contents on to the physical display. It’s a good idea to call refresh
just before asking for user input, to ensure the user can see the screen.

The philosophy behind all this is to allow the programmer to do multiple
updates on the imaginary screen or windows and do a refresh once all his
screen updates are done. scr.refresh() checks the window and updates
only the portion which has been changed. (You can force a full window
refresh by calling the scr.touchwin() function before scr.refresh().) This
improves performance and offers greater flexibility too. However, it is
sometimes frustrating to beginners. A common mistake committed by
beginners is to forget to call scr.refresh() after doing some updates through
the scr.addstr() or scr.addch()class of functions. Another common error is
to call the wrong window’s refresh method.

2

Hello World !!!

1.5 Reading character input
The penultimate fuction is scr.getch() which as the name suggests reads a
character. Note that it does not by default wait for the enter key, it reads each
keypress as it is performed. It does however block until a keypress is present.
In this case we ignore the character because we are only using it as a pause
before ending the program.

1.6 About endwin()
And finally, don't forget to end the curses mode. Otherwise your terminal
might behave strangely after the program quits. cur.endwin() frees the
memory taken by the curses sub-system and its data structures and puts the
terminal in normal mode. This function must be called after you are done with
the curses mode. If your program does exit prematurely so that endwin() is
not called, you may need to type one or more of the following commands:

$ stty sane

$ stty echo -nl

$ stty reset

to reset your terminal so that it displays properly. If that fails then you will
probably need to close the terminal and open a new one!

Now that we have seen how to write a simple curses program let's get into the
details. There are many functions that help customize what you see on screen
and many features which can be put to full use.

Here we go...

3

2 Initialization
We now know that to initialize curses system the function initscr() has to be
called. There are functions which can be called after this initialization to
customize our curses session. We may ask the curses system to set the
terminal to raw mode or initialize color or initialize the mouse etc. Let's
discuss some of the functions that are normally called immediately after
initscr()

2.1 raw() and cbreak()
Normally the terminal driver buffers the characters a user types until a new
line or carriage return is encountered. However, most GUI style programs
require that the characters be available as soon as the user types them. The
above two functions are used to disable line buffering. The difference between
these two functions is in the way control sequences like suspend (CTRL-Z) and
interrupt (CTRL-C) are passed to the program. In the raw() mode these
characters are directly passed to the program without generating a signal. It
is then up to the programmer to catch them and do whatever seems
appropriate. In the cbreak() mode these control characters are interpreted
by the terminal driver, so that you can, for example hit CTRL-C to interrupt
the program (but if you do, you will likely need to use stty to reset your
terminal since endwin() will not have been called).

2.2 echo() and noecho()
When you use a terminal to interact with the computer the terminal sends the
characters you type to the computer and the computer then sends them back
to the terminal which displays them on screen. This is how you see what you
have typed and is known as echoing. Without an echo you would be typing
blind into the terminal. Sometimes echoing is deliberately turned off - for
example when typing a password.

echo() and noecho() control the echoing of characters typed by the user to
the terminal. noecho() switches off echoing. The reason you might want to do
this is to gain more control over echoing or to suppress unnecessary echoing
while taking input from the user through the getch() etc. functions. Many
interactive programs call noecho() at initialization and do the echoing of
characters in a controlled manner. It gives the programmer the flexibility of
echoing characters at any place in the window without updating current (y,x)
coordinates.

5

NCURSES Programming HOWTO

2.3 keypad()
This method enables the reading of function keys like F1, F2, arrow keys,
mouse clicks etc.

Almost every interactive program enables this, as arrow keys are a major part
of any User Interface. Do win.keypad(True) to enable this feature for any
given window. You will learn more about key management in later sections of
this document. Note that it is window specific so if you find that you are not
able to recognize the special keys (or mouse clicks) check that you have set
this for the window in question.

2.4 halfdelay()
This function is not often used but can be useful sometimes. Half-delay mode
is similar to the cbreak mode in that characters typed are immediately
available to the program, however half-delay adds a time delay of 'X' tenths of
a second and then returns ERR, if no input is available. 'X' is the timeout value
passed to the function halfdelay().

This is useful when you want to ask the user for input, and if they don’t
respond within a certain time, we can do some thing else. One possible
example is a timeout at the password prompt. Curiously you have to call
nocbreak() to get out of half-delay mode (which will also exit cbreak mode of
course, so you may need to immediately re-initialize cbreak() if you need its
features).

2.5 Miscellaneous Initialization Functions
There are a few more functions which are sometimes used during initialization
to customize curses behavior. They are not used as extensively as those
mentioned above. Some of them are explained later where appropriate.

2.6 An Example
Let's write a program which will clarify the usage of these functions.

Example 2. Initialization Function Usage example

import curses as cur
scr = cur.initscr() # Start curses mode
cur.raw() # Line buffering disabled
cur.noecho() # Don't echo() while we do getch
scr.keypad(True) # We get F1, F2 Arrow keys etc.

scr.addstr("Type any character to see it in bold\n")
ch = scr.getch() # If raw() or cbreak() hadn't been called

we have to press enter before it
gets to the program

6

Initialization

if ch == cur.KEY_F1: # Without keypad enabled this will
scr.addstr("F1 Key pressed") # not get to us either

Without noecho() some ugly escape
characters might have been printed
on screen

else:
scr.addstr("The pressed key is ")
scr.attron(cur.A_BOLD)
scr.addstr(chr(ch))
scr.attroff(cur.A_BOLD)

scr.refresh() # Print it on to the real screen
scr.getch() # Wait for user input
cur.endwin() # End curses mode

This program is self-explanatory but I used functions which haven’t been
explained yet. The functions attron() and attroff() are used to switch text
attributes on and off respectively. In the example I used them to print the
characters in bold. These functions are explained in detail later.

2.7 A Word about Windows
Before we plunge into the myriad curses functions, let me clarify a few things
about windows. A window is an area of the screen defined by the curses
system. A window does not mean a bordered window with controls for sizing
or moving etc, such as you usually see on GUI systems.

When curses.initscr() is called, it creates a memory structure representing
the default window, conventionally called stdscr, which represents your full
terminal screen. If you are doing simple tasks like printing a few strings,
reading input etc, you can safely use this single window for all of your
purposes. You can also however create new windows and call functions which
explicitly work on the specified window. We will see all of these techniques
later.

For example, if you call:

scr.addstr("Hi There !!!")
scr.refresh()

Curses prints the string on the stdscr buffer at the current cursor position.
The call to scr.refresh() causes any changes in the stdscr buffer to be
written to the physical display.

Say you have created other windows then these will have their own memory
buffers. In the C library you have to call a function with a 'w' added to the
usual function and explicitly pass the window buffer to the function:

waddstr(win, "Hi There !!!");
wrefresh(win);

7

NCURSES Programming HOWTO

However, in Python these functions have all been translated to methods of a
Window class so you use the normal function name and simply attach it to the
relevant window. In this case the C code above would become:

win.addstr(“Hi There!!!”)
win.refresh()

In addition, many of these text methods take a coordinate pair of lines and
columns to indicate where within the window the text should appear. The
coordinate system starts at 0 in both dimensions.

You can also add a text attribute at the end of the argument list to control
colors and bold or underline etc. You will see more on that shortly.

2.8 The curses.wrapper() Function
A unique feature to the Python version of curses is the wrapper functionality.
So far, every program we have written has included the standard initscr()
and endwin() top and tail code as well as other initialization type things. To
save us having to type this everytime Python provides a convenience function
that takes care of the standard initialization and then calls a function that
takes a window as its only argument. The wrapper also catches any errors and
ensures that endwin() gets called to clean up the screen for us. In the
examples from here on I’ll normally use the wrapper for convenience unless
there is some specific initialization that needs doing or we are omitting some
of the usual initialization steps.

Here is a minimal example using the wrapper:

Example 13b – Python wrapper example

import curses as cur

def main(win):
 win.addstr(4,4,"Hello world")
 win.refresh()
 win.getch()

cur.wrapper(main)

8

3 Output Functions
I guess you can't wait any more to see some action. Back to our odyssey
through the world of curses functions. Now that curses is initialized, let's
interact with the world.

There are four categories of method by which you can output to the screen.

1. Window.addch([y,x],ch, [attr]) Print single character with
attributes

2. Window.addstr([y,x],string,[attr]) Print strings

3. Window.insch([y,x],ch,[attr]) Insert a single character

4. Window.insstr([y,x,str,,[attr]) Insert a string

Note: The C library contains yet another class print() which takes a format-
string like the C printf() function. However, in Python we do string
formatting on the the string object itself, so there is no need for the print
family of functions in Python.

The addXXX family put the characters directly to the screen overwiting any
existing text. The insXXX methods insert the characters, pushing existing text
to the right. Any text pushed off the screen is lost (it does not wrap to the next
line) and will not be restored if the inserted text is later deleted.

Also note once more that the coordinates are passed as y,x rather than the
more usual x,y. This is just a foible of the curses library, you will get used to it
eventually!

Let's see each one in detail.

3.1 addch() Method
This method puts a single character into the current cursor location and
advances the position of the cursor. (Remember that in Python a character is
simply a string of length 1, it is not a separate type as in C.) You provide the
character to be printed. In practice addch() is most commonly used to print a
character with some specific attributes.

Note: you cannot pass an empty string as the character.

Attributes are explained in detail later in the document. If a character is
associated with an attribute (bold, reverse video etc.), then curses prints the
character with that attribute.

In order to combine a character with some attributes, you have two options:

 Pass a bitwise OR of all the required attributes as a final argument to
win.addch() (or addstr()) These attribute values can be found as
defined constants in the curses module. For example, if you want to

9

NCURSES Programming HOWTO

print a character ch in bold and underlined, you would call win.addch()
as below.

win.addch(ch, curses.A_BOLD | curses.A_UNDERLINE)

 Use a Window method like attrset(), attron(), attroff().

These methods are explained later in the Attributes section. Briefly, they
manipulate the current attributes of the target window. Once set, the
characters printed in the window are associated with the attributes until it is
turned off.

Additionally, curses provides some special characters for character-based
graphics. You can draw tables, horizontal or vertical lines, etc. You can find
definitions for all the available characters in the curses module
documentation. Try looking for names beginning with ACS. They are not
available in code until after initscr() has been called. The ACS characters
are discussed in more detail later in the document.

Note that win.addch() can also take an optional pair of y,x coordinates as its
first two attributes, in which case the attribute is printed at the specified
location within the window.

We are now familiar with the most basic output method win.addch().
However, if we want to print a string, it would be very annoying have to print
it character by character. Fortunately, curses provides methods for outputting
complete strings too.

3.2 addstr() Method
addstr() is used to put a character string into a given window. This method is
similar to calling addch() once for each character in a given string. Another
method in this family is addnstr(), which takes an integer n as its second
argument. This method puts, at most, n characters into the screen. If n is
negative, then the entire string will be added. Both variants can also accept
an attribute value, which is applied to the whole string in the same way as
discussed for addch() above.

Note: If the string cannot be fitted into the window the method will fail and
nothing will be written.

Example 3: A simple addstr() example

import curses as cur
msg = "Just a string"

scr = cur.initscr()
rows,cols = scr.getmaxyx() # get number of rows & columns

print message at center of screen
scr.addstr(rows//2,(cols-len(msg))//2, msg)

10

Output Functions

print message at bottom of screen
scr.addstr(rows-2, 0,
 "This screen has %d rows and %d columns\n" % (rows,cols)
)
scr.addstr("Try resizing your window(if possible) and " +
 "then run this program again"
)

scr.refresh()
scr.getch()
cur.endwin()

The above program demonstrates how easy it is to use addstr(). You just
provide the coordinates and the message to be printed on the screen, then it
does what you want. Notice that it takes account of any newline characters
(‘\n’) embedded in the string and responds accordingly.

3.3 insch() Method
This method is very similar to addch() above but in this case it pushes any
existing text one position right. Any characters at the end of the line will be
pushed off the window and lost.

3.4 inssttr() Method
This is similar to addstr() above but again it pushes any existing text to the
right. Any characters at the end of the line will be pushed off the window and
lost.

There are other members of the insXXX group of methods that can be used for
inserting lines. In this case the lines below are moved down and those at the
bottom of the window will be lost. Consult the curses documentation for more
details.

3.5 A Word of Caution
All these methods take y coordinate first and then x in their arguments. A
common mistake by beginners is to pass x,y in that order. If you are doing too
many manipulations of (y,x) coordinates, think of dividing the screen into
windows and manipulate each one separately. Windows are explained later in
the Windows section.

Another gotcha with curses is that if you move the cursor outside the window
it will raise a curses.error exception. This means that any attempt to write a
string in the last character position will result in an error as the cursor has
nowhere to go after writing the characer! This warning also applies to
creating new windows and subwindows, if they are too big or start in the

11

NCURSES Programming HOWTO

wrong position you will get an error. If you use the curses.wrapper() you
won’t see the error, you will simply find your program exiting prematurely!

12

Input functions

4 Input functions
Printing without taking any input is pretty boring. Let's take a look at methods
which allow us to get input from the user or sceen. These methods also can be
divided into four categories.

1. Window.getch([y,x]) Get a character, optionally from a location

2. Window.getstr([y,x],[n]) Get a string, optionally from a location

3. Windows.inch([y,x]) Read an existing character, from a location

4. Windows.instr(y,x,[n]) Read an existing string from a location

Note that the return value from getch()/inch() is an integer and values
above 255 represent special characters such as cursor movement keys or
function keys etc. getstr()/instr() return a bytestring object and so may
need to be decoded to a string in the usual Python manner. The curses.ascii
module can be helpful in interpreting the integers as characters, but is not
covered in this document.

4.1 getch() category of methods
These functions read a single character from the terminal but there are
several subtle facts to consider. For example if you don't use the initialization
function cbreak() (or raw() or halfdelay()), curses will not read your input
characters as they are typed but will begin reading them only after a newline
or an EOF/EOT is encountered. In order to avoid this, the cbreak() function
must be used so that characters are immediately available to your program.

Another widely used function is noecho(). As the name suggests, when this
function is set (used), the characters that are keyed in by the user will not
show up on the screen. The two functions cbreak() and noecho() are typical
examples of key management. Functions of this genre are explained in the key
management section.

There is a closely related method called getkey() which reads a string of
characters rather than a single character. This is useful for special keys such
as function keys that return more than a single character per keystroke.

Note that there is a win.nodelay() method which, when activated, causes
the getch()/getkey() methods to return immediately and, if no key is
pressed, give -1 as a return value for getch() or raise an exception for
getkey(). (For those raised on BASIC programming this makes getch() act
like the BASIC function INKEYS$) We will take a closer look at getch() in the
section on interfacing with the keyboard.

Finally there is a method for reading so-called wide characters.
win.get_wch() is the wide equivalent to win.getch(). We don’t discuss the
use of wide characters in detail in this document.

13

NCURSES Programming HOWTO

4.2 getstr() category of methods
These functions are used to get strings from the terminal. In essence, this
function performs the same task as would be achieved by a series of calls to
win.getch() until a newline, carriage return, or end-of-file is received. They
return a bytes object which can be converted to a Python string by decoding
in the usual way. win.getstr() does allow for some very basic editing of
input prior to hitting return.

4.3 An Example
Example 4. A Simple getstr() example

import curses as cur

prompt ="Enter a string: "

scr = cur.initscr()
rows,cols = scr.getmaxyx()

scr.addstr(rows//2,(cols-len(prompt)) // 2, prompt)
bs = scr.getstr() # read the user input as a bytestring
scr.addstr(cur.LINES-2, 0, "You entered: %s" % bs.decode('utf-8'))

scr.getch()
cur.endwin()

Note that cur.LINES is a constant defined in the curses module that holds the
number of lines (or rows) in the current terminal. It is effectively the
maximum height of a window and specifically the size of stdscr. There is
another like it: cur.COLS that defines the current number of columns on the
screen. In the code above we could have used cur.LINES and cur.ROWS
instead of the call to getmaxyx() however, if dealing with windows other than
stdscr, you need to use the function as demonstrated, since they may not be
the same size as the terminal.

14

Input functions

4.4 Reading from the Screen
In addition to gathering input from users curses also provides a couple of
functions for reading characters from a window

1. Window.inch(y,x) read character (as an integer) from location

2. Window.instr(y,x, [n]) read string (or n chars) from location

Note that the returned value from inch() is an integer in which the bottom 8
bits represent the character and the upper bits the attributes. The return
value from instr() is a bytestring just as it was for getstr().

Note also that instr() can take a length value, n, as an argument in which
case it will return the next n characters. If n is longer than the space to the
end of the line the method will fail.

You shouldn’t need to use these methods very often but occasionally it is
useful. We will see an example in the next section when we discuss how to get
the current set of text attributes.

15

5 Attributes
We have already seen an example of how attributes can be used to print
characters with some special effects.

Attributes, when set prudently, can present information in an easy,
understandable manner. The following program takes a Python script as input
and prints the file with comments in bold. If the file is too long to fit on a
screen we pause until the user hits a key before starting a new page.

Example 5. A Simple Attributes example

import curses as cur
import sys

def main(fname):
 in_comment = False
 scr = cur.initscr()
 rows,cols = scr.getmaxyx()

 with open(fname) as fp:
 body = fp.read() # read whole file

 for ch in body: # read a char at a time
 y,x = scr.getyx()

 if (ch == '#') and not in_comment:
 in_comment = True
 scr.attron(cur.A_BOLD) # make comments bold
 if ch == '\n' and in_comment:
 in_comment = False
 scr.attroff(cur.A_BOLD) # end bold
 if y == rows - 1: # reached last row
 scr.addstr("<-Press Any Key->")
 scr.getch()
 scr.clear()
 scr.move(0, 0) # back to top of screen
 scr.addch(ch)
 scr.refresh()
 continue
 scr.addch(ch)
 scr.refresh()
 scr.addstr(cur.LINES-1,0, "Hit any key to exit")
 scr.getch() # pause for exit

17

NCURSES Programming HOWTO

 cur.endwin()

if __name__ == "__main__":
 if len(sys.argv) != 2:
 print("Usage: %s <a script file name>\n" % sys.argv[0])
 sys.exit(1)
 name = sys.argv[1]
 main(name)

Don't worry about all the initialization and file handling stuff we have already
seen. Concentrate on the for loop. It reads each character in the file and
searches for the pattern ‘#’. Once it spots the pattern, it switches the BOLD
attribute on with attron() . When we reach the end of a line after a comment
it is switched off by attroff() .

The above program also introduces us to two useful functions getyx() and
move(). The first function gets the coordinates of the present cursor into the
variables y, x. The function move() moves the cursor to the coordinates given
to it.

The above program is really a simple one which doesn't do much. However, by
adding to these lines one could write a more useful program which reads a
file, parses it and prints it in different colors just like a syntax-aware editor.
One could even extend it to other languages as well.

5.1 The Details
Let's get into more details of attributes. The functions attron(), attroff(),
attrset() can be used to switch attributes on/off , get attributes and produce
a colorful display.

The functions attron() and attroff() take a bit-mask of attributes and
switch them on or off, respectively. The following video attributes, which are
defined in the curses module can be passed to these functions.

A_NORMAL Normal display (no highlight)

A_STANDOUT Best highlighting mode of the terminal.

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_PROTECT Protected mode

A_INVIS Invisible or blank mode

A_ALTCHARSET Alternate character set

18

Attributes

A_CHARTEXT Bitmask to extract a character

color_pair(n) Color-pair number n

The last one is the most colorful one :−) Colors are explained in the next
section.

We can bitwise OR (|) any number of the above attributes to get a combined
effect. If you wanted reverse video with blinking characters you can use

scr.attron(curses.A_REVERSE | curses.A_BLINK)

5.2 attron() vs attrset()
Then what is the difference between attron() and attrset()? attrset()
sets all the background attributes of a window whereas attron() just
switches on the attribute given to it. So attrset() fully overrides whatever
attributes the window previously had and sets it to the new attribute(s).
Similarly attroff() just switches off the attribute(s) given to it as an
argument. This gives us the flexibility of managing attributes easily but if you
use them carelessly you may lose track of what attributes the window has and
garble the display. This is especially true while managing menus with colors
and highlighting. So decide on a consistent policy and stick to it.

5.3 attr_get()
In C curses the function wattr_get(win,...) gets the current attributes and
color pair of the window. Python does not provide this function, however the
attributes of a given character can be read using inch(). (We cover the input
fuctions later.) So we can create our own version of attr_get() like this:

def attr_get(win):
 y,x = win.getmaxyx() # how many lines in the window?
 win.insch(y-1,0,' ') # write a space at bottom left
 ch = win.inch(y-1,0) # read the char (including attributes)
 win.delch(y-1,0) # remove the space again
 return ch

19

NCURSES Programming HOWTO

And use it like this:

atts = attr_get(scr)
if atts & cur.A_UNDERLINE: # test for underline on with a bitwise AND
 scr.addstr("Underline is on")
else:
 scr.addstr("Underline is off")

There is an unfortunate bug in this code in that if a characer exists in the
bottom right position of the screeen then it will be pushed off the screen by
the call to insch() but when the character is later deleted with delch() the
lost characer is not replaced. I leave it as an exercise for the reader to add
code to check for that issue and take remedial action!

5.4 chgat() functions
The function chgat() can be used to set attributes for a group of characters
without moving the cursor. It changes the attributes of a given number of
characters starting at the current cursor location or from a given position.

We can give -1 as the character count to update to the end of the line. If you
wanted to change the characters from the current position to the end of the
line to reverse video, just use this.

scr.chgat(−1, A_REVERSE)

This function is useful when changing attributes for characters that are
already on the screen. Move to the character that you want to change and
change the attribute.

Example 6. chgat() Usage

import curses as cur

scr = cur.initscr()
cur.start_color() # color handling is described later
cur.init_pair(1, cur.COLOR_BLACK,cur.COLOR_YELLOW)

This uses the default attributes
scr.addstr("A big string which I didn't want to fully type.\n")
scr.refresh() # make it visible
cur.napms(1000) # pause 1 second
Now call chgat to change the colors
params 1,2 are the (optional) y,x position
param 3 is (optional) length, -1 = EOL
4 is text attributes(color_pair converts colors to attributes)
scr.chgat(0,0,-1,cur.A_BOLD|cur.color_pair(1))
scr.refresh() # see the change
cur.napms(1000) # pause again
scr.chgat(cur.A_NORMAL) # use default values to restore

20

Attributes

scr.refresh()
scr.getch()
cur.endwin()

This example also introduces us to the color world of curses. Colors will be
explained in detail later. It also introduces the useful curses.napms()
function which pauses (naps) for the given number of milliseconds. So
curses.napms(1000) pauses for 1 second.

21

6 Windows
Windows form the most important concept in curses. You have seen the
standard window stdscr above, where all the text handling functions were
called as methods of this window. Now to design even the simplest GUI style
program, you need to resort to windows. One reason you may want to use
windows is to manipulate parts of the screen separately, for better efficiency,
by updating only the areas that need to be changed. Another is for a better
user experience, by making it easier to focus on a particular part of the
screen.

I would say the last reason is the most important in going for windows. You
should always strive for a clear and easy to manage design in your programs.
If you are writing big, complex GUIs this is of pivotal importance before you
start doing anything.

It is important to emphasize that curses windows are very different from OS
GUI windows. They have no frame or title bar or any other adornments. They
certainly don’t respond to the mouse or any keyboard shortcuts unless you
program them to do so. They are simply a defined area of screen which can
have text inserted, be moved, resized and so on.

6.1 The Basics
A window can be created by calling the function curses.newwin(). It doesn't
create anything on the screen. It creates an object in memory which you
manipulate and so update its attributes like size, beginy, beginx etc. Hence,
in curses, a window is just an abstraction of an area of screen, which can be
manipulated independent of other parts of the screen.

Finally the window can be destroyed with del(win) in the usual Python style.
It will delete the window object and free the memory.

6.2 Let there be a Window!!!
What fun is it, if a window is created and we can't see it? So the fun part
begins by displaying the window. A call to our old friend the refresh()
method achieves this but first we need to put some visible data, such as text
or a border, into the window or we won’t see any indication of its presence.

The method window.box() can be used to draw a border around the window.
There are many other methods for manipulating window objects in curses.
Let's explore these methods in more detail in this example.

23

NCURSES Programming HOWTO

Example 7. Window Border example

import curses as cur

def create_newwin(height, width, starty, startx):
 local_win = cur.newwin(height, width, starty, startx)
 local_win.box(0 , 0) # 0, 0 gives default characters
 return local_win

def destroy_win(local_win):
 # we must remove the contents before deleting the object.
 # The parameters are
 # 1. ls: character to be used for the left side of the window
 # 2. rs: character to be used for the right side of the window
 # 3. ts: character to be used for the top side of the window
 # 4. bs: character to be used for the bottom side of the window
 # 5. tl: character to be used for the top left corner of the window
 # 6. tr: character to be used for the top right corner of the window
 # 7. bl: character to be used for the bottom left corner of the window
 # 8. br: character to be used for the bottom right corner of the window
 local_win.border(' ', ' ', ' ',' ',' ',' ',' ',' ')
 local_win.refresh() # remove visible contents before deleting object
 del(local_win) # delete the object

def main(scr):
cur.curs_set(0) # turn off the cursor
height = 3
width = 10
starty = (cur.LINES - height) // 2 # Calculate center
startx = (cur.COLS - width) // 2 # of the window

scr.addstr("Press Q to exit (F1 for help)")
scr.refresh();

my_win = create_newwin(height, width, starty, startx)
my_win.refresh()

while True: # create an event loop
 ch = scr.getch()
 if ch in (ord('Q'), ord('q')):
 break # exit the event loop
 elif ch == cur.KEY_F1:
 scr.addstr(0,0, "Use arrow keys to move box, Q to exit")
 scr.refresh()
 elif ch == cur.KEY_LEFT:
 startx -= 1
 destroy_win(my_win)

24

Windows

 my_win = create_newwin(height, width, starty, startx)
 my_win.refresh()
 elif ch == cur.KEY_RIGHT:
 startx += 1
 destroy_win(my_win)
 my_win = create_newwin(height, width, starty, startx)
 my_win.refresh()
 elif ch == cur.KEY_UP:
 starty -= 1
 destroy_win(my_win)
 my_win = create_newwin(height, width, starty, startx)
 my_win.refresh()
 elif ch == cur.KEY_DOWN:
 starty += 1
 destroy_win(my_win)
 my_win = create_newwin(height, width, starty, startx)
 my_win.refresh()
 elif ch == ord('h'):
 my_win.addstr(1,2,"Hello!") # 1,2, to centre text
 my_win.refresh()

destroy_win(my_win)

cur.wrapper(main)

6.3 Explanation
Don't scream. I know it's a big example but I have to explain some important
things here :-). This program creates a rectangular window that can be moved
with left, right, up, down arrow keys. It repeatedly creates and destroys
windows as the user presses keys. Let's dissect it line by line.

The create_newwin() function creates a window with newwin() and displays
a border around it with box().

The function destroy_win() first erases the window from screen by painting
a border with ' ' characters and then calling del(win) to delete the object.

As you can see, I used border() instead of box(). This is because box() only
takes the top and side characters, you cannot specify the corners which are
always the defaults. Thus the window would not be wholly deleted. border()
draws a border around the window with the characters given to it as the 4
lines and 4 corner points so we can delete the entire border. To give an
example, if you have called border() as below:

local_win.border(, '|', '|', '−', '−', '+', '+', '+', '+')

it produces some thing like:

25

NCURSES Programming HOWTO

 +−−−−−−−−−−−−+
 | |
 +−−−−−−−−−−−−+

Finally we need to refresh the window to make the border dissappear and
then, and only then, can we delete the window object.

Note that the curses.wrapper() function calls various initialization functions to
ensure that a) all the keys are passed to the program (cbreak) and b) that they
do not display (noecho) on screen and c) the cursor is hidden (curs_set). We
then create the new window local_win , display it with its own refresh()
(it’s not part of stdscr, it is an independant window).

Next an event loop (while) is started using getch() to read key-presses.
Depending on the key the user presses the appropriate code is executed. We
either move local_win by modifying starty or startx and deleting the
existing window before creating a new window at the new location. Or we can
display some text (hitting ‘h’) using local_win’s version of addstr(), using
local_win’s coordinates rather than those of stdscr. Or we can display some
help text (by hitting F1)

6.4 Some Other Stuff in the Example
You can also see in the above examples, that I have used the variables
curses.COLS and curses.LINES which are initialized to the terminal size by
initscr(). They can be useful in finding screen dimensions or finding the
center coordinate of the screen as used above. The function win.getch() ,as
usual, reads a key from the keyboard (although in this case we actually store
it in the ch variable whereas previously we just ignored it!) and depending on
the key pressed, the program does the corresponding work. This type of while
loop combined with an if/elif ladder is very common in any GUI style
programs although usually hidden in the depths of a GUI framework like
Tkinter.

6.5 Other Border Functions
The above example is grossly inefficient in that, with each press of a key, a
window is destroyed and another is created. So let's write a more efficient
program which uses other window-related functions.

The following program uses the clear() and mvwin() window methods to
achieve a similar effect. These two functions are simple. clear() deletes
everything in the window (including the border) and mvwin() moves the
window to a new location (but does not draw it). The only problem is that
mvwin() fails if the window moves off the visible screen. So we need to check
and, if necessary, modify the coordinates before calling it.

26

Windows

The following example is very similar to the previous one except we don’t
delete/create windows but create a new function to clear and move the
existing window using the curses window method mvwin().

Example 8. More border functions

import curses as cur

def move_window(win, y, x):
 win.clear()
 win.refresh()
 win.mvwin(y,x)
 win.box(0,0)

def main(scr):
 cur.curs_set(0) # turn off the cursor
 scr.refresh() # show initial display

 # create new window
 height, width = 3,10
 starty = (cur.LINES - height) // 2 # Calculate center
 startx = (cur.COLS - width) // 2 # of the window
 my_win = cur.newwin(height, width, starty, startx)
 my_win.box(0 , 0) # 0, 0 gives default characters
 my_win.refresh() # make it visible

 # Run event loop
 ch = scr.getch()
 while True: # create an event loop
 if ch in (ord('Q'), ord('q')):
 break # exit the event loop
 elif ch == cur.KEY_F1:
 scr.addstr(0,0, "Use arrow keys to move box, Q to exit")
 scr.refresh()
 elif ch == cur.KEY_LEFT:
 startx -= 1
 if startx < 0: # reached left edge
 startx = cur.COLS-width # go to opposite side
 move_window(my_win,starty,startx)
 my_win.refresh()
 elif ch == cur.KEY_RIGHT:
 startx += 1
 if startx > cur.COLS-width-1: # reached right edge
 startx = 0 # go to opposite side
 move_window(my_win,starty,startx)
 my_win.refresh()
 elif ch == cur.KEY_UP:

27

NCURSES Programming HOWTO

 starty -= 1
 if starty < 0: # reached top
 starty = cur.LINES-height-1 # go to opposite side
 move_window(my_win,starty,startx)
 my_win.refresh()
 elif ch == cur.KEY_DOWN:
 starty += 1
 if starty > cur.LINES-height-1: # reached bottom
 starty = 0 # go to opposite side
 move_window(my_win,starty,startx)
 my_win.refresh()
 elif ch == ord('h'):
 my_win.addstr(1,2,"Hello!") # 1,2, to centre text
 my_win.refresh()
 ch = scr.getch()

cur.wrapper(main)

Note that there are various other things you can do with windows, including
set the background color or pattern, using window.bkgd() and
window.bkgdset(). We will see these later when we discuss colors.

6.6 Sub-Windows
Curses allows us to create sub-windows inside other windows. These can best
be thought of as panes within a larger window into which you can insert text
etc. When you move a window all of its sub-windows move with it. When you
clear a window you clear its sub-windows too.

It is crucially important to realize that a sub-window is just a view onto the
parent window. When you write into a sub window you are also writing onto
the parent since they share a common model of the display. Equally if you
write to a part of the parent covered by a sub-window the text will show inside
the sub-window. This is what distinguishes sub-windows from new windows.
When you call newwin() you get a completely new, independent window that
owns its own display area. If a window underneath it writes text it does not
show on the new window. It will be invisible until you delete or move the new
window. With a sub window the text is shared and visible immediately.

Closely related to sub-windows are derived windows. The difference relates to
the coordinates used: screen based for sub windows, parent-window based for
derived windows. Personally, I prefer derived windows since they simplify the
calculation of coordinates.

The following example illustrates all of the various window types in action.

28

Windows

Example 8a Manipulating sub-windows

import curses as cur

def show_status(win,txt):
 # display text in bottom line of screen
 ht,wd = win.getmaxyx()
 win.addstr(ht-1,1, txt)
 win.clrtoeol()
 win.refresh()

def main(scr):
 # create the main window
 win = cur.newwin(16,50,4,4)
 win.box(0,0)
 win.addstr(4,7,"Main window")
 show_status(scr, “Created main window”)
 win.refresh()
 scr.getch()

 # add sub window of main
 sw = win.subwin(4,18, 6,9) # use screen coords
 sw.box(0,0)
 sw.addstr(1,2, "Sub window") # use sub win coords
 sw.refresh()
 show_status(scr, "Sub window creates a view onto main window")
 scr.getch()

 # add derived window of main
 dw = win.derwin(4,18, 6,9) # use mainwin coords
 dw.box(0,0)
 dw.addstr(1,2,"Derived window") # use derived win coords
 dw.refresh()
 show_status(scr,"Derived window is the same but uses relative coords")
 scr.getch()

 # add new window on top of main
 nw = cur.newwin(4,18,15,6)
 nw.box(0,0)
 nw.addstr(1,2,"New window")
 nw.refresh()
 show_status(scr,"New window on top of main window")
 scr.getch()

 # move main window, including sub windows
 scr.touchwin() # remove old window from screen
 scr.refresh()

29

NCURSES Programming HOWTO

 win.mvwin(2,10)
 win.refresh() # draw at new position, including subwins
 nw.touchwin()
 nw.refresh() # but new window stays where it was
 show_status(scr,"Move main window with sub windows, newwin is not affected")
 scr.getch()

 # clear main window - includes subwindow and border
 win.clear()
 win.refresh()
 nw.touchwin()
 nw.refresh() # new window stays as it was
 show_status(scr,"Clear main window text and all borders, newwin untouched")
 scr.getch()

 # redraw just the borders
 win.box(0,0)
 sw.box(0,0)
 dw.box(0,0)
 win.refresh()
 nw.touchwin()
 nw.refresh() # bring new window to top

 show_status(scr, "Redrawing borders shows window objects still exist")
 scr.getch()

cur.wrapper(main)

30

7 Colors

7.1 The Basics
Life seems dull with no colors. Curses has a nice mechanism to handle colors.
Let's get into the thick of the things with a small program.

Example 9. A Simple Color example

import curses as cur

def print_in_middle(win, aString):
 y,x = win.getmaxyx()
 y //= 2
 x = (x - len(aString)) // 2
 win.addstr(y,x, aString)
 win.refresh()

scr = cur.initscr()
if not cur.has_colors(): # Can we do color?
 cur.endwin()
 print("Your terminal does not support color")
 raise SystemExit(1)
else:
 cur.start_color() # initialize color data structures
 scr.addstr(“Your terminal supports color.\n”)
 scr.addstr(“You can define up to %d color pairs” % (cur.COLOR_PAIRS-1))
 scr.refresh()
 cur.napms(1000)

cur.init_pair(1, cur.COLOR_RED, cur.COLOR_BLACK)
scr.attron(cur.A_BOLD | cur.color_pair(1)) # apply color scheme
print_in_middle(scr, "Viola !!! In color ...\n")
cur.napms(1000) # pause 1s

scr.attroff(cur.color_pair(1)) # turn color off
print_in_middle(scr, "Booo!!! In color no more!")
scr.getch()
cur.endwin()

As you can see, to start using color, you should first check whether the
terminal supports color using has_color(). If it does you can call the function

31

NCURSES Programming HOWTO

start_color()to initialize the color handling data structures. After that, you
can use color capabilities of your terminals using various functions.

Curses initializes all the colors supported by the terminal when
start_color() is called. These can be accessed by the defined constants like
COLOR_BLACK etc. Now, to actually start using colors, you have to define pairs.

Colors are always used in pairs. That means you have to use the function
init_pair() to define the foreground and background for the pair number
you give. The first pair color_pair(0) is always white on black, the other
pairs are free for you to define as you wish. You can define up to
COLOR_PAIRS-1 combinations but that value will not exist until after you call
start_color()! COLOR_PAIRS is terminal dependant. For example on my
Gnome Terminal application it is 256 but on a vanilla xterm it is only 64.

After initialization the pair number can be used as a normal attribute when
combined with the color_pair() function. In our example we combined it
with the A_BOLD text attribute using a bitwise or (|). This may seem to be
cumbersome at first but this elegant solution allows us to manage color pairs
very easily. To appreciate it, you should look into the the source code of
"dialog"; a utility for displaying dialog boxes from shell scripts (we cover the
Python version of dialog in a later section). The developers have defined
foreground and background combinations for all the colors they might need
and initialized them at the beginning. This makes it very easy to set attributes
just by accessing a pair which we have already defined as a constant.

The following colors are defined in the curses module. You can use these as
parameters for various color functions.

COLOR_BLACK 0
COLOR_RED 1
COLOR_GREEN 2
COLOR_YELLOW 3
COLOR_BLUE 4
COLOR_MAGENTA 5
COLOR_CYAN 6
COLOR_WHITE 7

Note that the Python wrapper() function calls start_color() for you.

7.2 Changing Color Definitions
The function curses.init_color()can be used to change the RGB values for
the colors defined by curses initially.

Say you wanted to lighten the intensity of the COLOR_RED color by a smidge (or
even change it to something completely different like brown!). Then you can
use this function as

cur.init_color(COLOR_RED, 700, 0, 0)
param 1 : color name

32

Colors

param 2, 3, 4 : RGB content min = 0, max = 1000

Note that the RGB (Red,Green,Blue) values are specified from 1-1000 not the
more common 0-255 used in HTML/CSS etc.

Note too that if you call this mid-way through a session any existing text in the
specified color is automatically changed to the new color and the screen
refreshed to display it.

If your terminal cannot change the color definitions, the function returns ERR.
The function curses.can_change_color() can be used to find out whether
the terminal has the capability of changing color content or not.

7.3 Color Content
The functions curses.color_content() and curses.pair_content() can be
used to find the color content and foreground-background combination for a
pair. color_content() returns the RGB values for a given color number (eg.
COLOR_RED) while pair_content() returns the foreground,background pair of
color numbers (eg. COLOR_GREEN,COLOR_BLACK) for a given color pair.

33

8 Interfacing with the Keyboard
No GUI is complete without a strong user interface and to interact with the
user, a curses program should be sensitive to key presses or the mouse
actions performed by the user. Let's deal with the keys first.

8.1 The Basics
As you have seen in almost all of the above examples, it's very easy to get key
input from the user. A simple way of getting key presses is to use window
object’s getch() method. The cbreak() mode should be enabled to read keys
when you are interested in reading individual key hits rather than complete
lines of text (which usually end with a carriage return). keypad() should be
enabled to get the Function keys, Arrow keys etc. See the initialization section
for details.

getch() returns an integer corresponding to the key pressed. If it is a text
character, the integer value will be equivalent to the ordinal of the character.
Otherwise it returns a number which can be matched with the constants
defined in the curses module. For example, if the user presses F1, the integer
returned is 265. This can be checked using the constant KEY_F1 defined in
curses. This makes reading keys portable and easy to manage.

When you call getch(), it will wait for the user to press a key, (unless you
specified a timeout using curses.halfdelay()) then, when the user presses a
key, the corresponding integer is returned. You can then check the value
returned against the constants defined in curses to match against the keys
you want. If you want to compare to a text character then you will need to get
the integer equivalent using the regular Python function ord(). (You can also
use the curses.ascii module features but, in most cases, ord() is simpler)

The following code snippet demonstrates the principle.

ch = scr.getch()
if ch == cur.KEY_LEFT:
 scr.addstr("Left arrow is pressed\n")

You saw this earlier, in Examples 7 and 8, which read the arrow keys and
moved a window on the screen.

Let's write a small program which creates a menu which can be navigated by
up and down arrows.

35

NCURSES Programming HOWTO

8.2 Simple Key Usage
Example 10. A Simple Key Usage example

import curses as cur

WIDTH=30
HEIGHT=10

choices = [
"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Exit",
]
n_choices = len(choices)
highlight = 0

def print_menu(m_win, hlight):
 global highlight
 x = 2
 y = 2
 m_win.box(0, 0)
 for n,choice in enumerate(choices,1):
 if highlight == n: # Highlight the present choice
 m_win.attron(cur.A_REVERSE)
 m_win.addstr(y, x, choice)
 m_win.attroff(cur.A_REVERSE)
 else:
 m_win.addstr(y, x, choice)
 y += 1
 m_win.refresh()

def main(scr):
 scr.clear()

 #initialize application data
 startx = (80 - WIDTH) // 2
 starty = (24 - HEIGHT) // 2
 highlight = 1
 choice = 0
 choice_fmt = "You chose choice %d with choice string %s\n"

36

Interfacing with the Keyboard

 # initialize menu window
 menu_win = cur.newwin(HEIGHT, WIDTH, starty, startx)
 menu_win.keypad(True)
 scr.addstr(0, 0, "Use arrow keys to go up and down. ”)
 scr.addstr(“Press Enter to select a choice")
 scr.refresh()
 print_menu(menu_win, highlight)

 # event loop
 while True:
 c = menu_win.getch()
 if c == cur.KEY_UP:
 if highlight == 1:
 highlight = n_choices
 else: highlight -= 1
 elif c == cur.KEY_DOWN:
 if highlight == n_choices:
 highlight = 1
 else: highlight += 1
 elif c in (KEY_RETURN, cur.KEY_ENTER):
 choice = highlight
 scr.addstr(cur.LINES-2, 0,
 choice_fmt % (choice, choices[choice - 1]))
 else:
 scr.addstr(cur.LINES-1, 0,
 "Character pressed: %3d" % c)

 print_menu(menu_win, highlight);
 if choice == n_choices: # User chose to come out of the menu
 scr.addstr(cur.LINES-1, 0, "Sorry to see you go")
 scr.clrtoeol()
 break
 scr.refresh()
 scr.getch() # pause a moment

cur.wrapper(main)

Notice the menu wrapping code that ensures the highlighting wraps around at
the ends of the menu movement. Notice also that we test for key value 10
(defined locally as KEY_RETURN) as well as the symbolic value KEY_ENTER. This
is because in most modern terminals the ENTER key is actually mapped to the
enter key on the numeric keypad. Key code 10 (the ‘\n’ new line) is for the
more commonly used “Carriage Return” key. The final point to note is that
after printing the final farewell we call clrtoeol() just to remove any
characters lingering from previous messages on that line.

37

9 Interfacing with the Mouse
Now that you have seen how to get keys, let’s do the same thing from the
mouse. Usually each UI allows the user to interact with both keyboard and
mouse.

9.1 The Basics
Before you can do anything with the mouse you must enable the keypad
feature using window.keypad(True) (previously used to detect Function keys)
and the events that you want to receive have to be enabled with

curses.mousemask(mask) -> (available, oldmask)

The parameter is a bit-mask of the mouse events you would like to detect. By
default, all the events are turned off. The bit mask ALL_MOUSE_EVENTS can be
used to get all the events and is the most common use-case. The return value
is a tuple of the currently available mouse mask and the previous mask. (This
allows you to restore previous behaviour in the case where you only want a
temporary change)

The following are all the event masks defined in curses (notice that there are
no mouse movement events, only button operations):

Name Description

BUTTON1_PRESSED mouse button 1 down

BUTTON1_RELEASED mouse button 1 up

BUTTON1_CLICKED mouse button 1 clicked

BUTTON1_DOUBLE_CLICKED mouse button 1 double clicked

BUTTON1_TRIPLE_CLICKED mouse button 1 triple clicked

BUTTON2_PRESSED mouse button 2 down

BUTTON2_RELEASED mouse button 2 up

BUTTON2_CLICKED mouse button 2 clicked

BUTTON2_DOUBLE_CLICKED mouse button 2 double clicked

BUTTON2_TRIPLE_CLICKED mouse button 2 triple clicked

BUTTON3_PRESSED mouse button 3 down

39

NCURSES Programming HOWTO

Name Description

BUTTON3_CLICKED mouse button 3 clicked

BUTTON3_DOUBLE_CLICKED mouse button 3 double clicked

BUTTON3_TRIPLE_CLICKED mouse button 3 triple clicked

BUTTON4_PRESSED mouse button 4 down

BUTTON4_RELEASED mouse button 4 up

BUTTON4_CLICKED mouse button 4 clicked

BUTTON4_DOUBLE_CLICKED mouse button 4 double clicked

BUTTON4_TRIPLE_CLICKED mouse button 4 triple clicked

BUTTON_SHIFT shift was down during button state change

BUTTON_CTRL control was down during button state change

BUTTON_ALT alt was down during button state change

ALL_MOUSE_EVENTS report all button state changes

REPORT_MOUSE_POSITION report mouse movement

9.2 Getting Events
Once a class of mouse events have been enabled, the getch() method returns
KEY_MOUSE every time some mouse event happens. Then the mouse event can
be retrieved with curses.getmouse().

The code approximately looks like this:

ch = win.getch()
if ch == cur.KEY_MOUSE:
 mouse_event = cur.getmouse()
 if mouse_event[4] == cur.BUTTON1_CLICKED:
 . # Do some thing with the BUTTON1 event

getmouse() returns the event as a 5-tuple: (Id,X,Y,Z,bstate)

The bstate is the main value we are interested in. It tells us the button state
of the mouse – which button was pressed. The Id is for handling multiple input
devices and the Z coordinate is not currently used. X,Y give the screen
coordinates where the event occured. (Note that the mouse event returns X
before Y unlike most curses functions)

A minimal mouse enabled program looks like:

40

Interfacing with the Mouse

import curses as cur
define mouse event indices
BSTATE = 4

def main(scr):
 # initialize mouse handling
 msk,_ = cur.mousemask(cur.ALL_MOUSE_EVENTS)

 scr.addstr("Click the mouse and see what happens, Q to exit")
 scr.refresh()
 count = 0

start event loop
 while True:
 ch = scr.getch()
 if ch in (ord(‘q’),ord('Q')):
 break
 if ch == cur.KEY_MOUSE: # Handle mouse events
 mev = cur.getmouse()
 count += 1
 scr.addstr(2,0, "Mouse event %d detected" % count)
 if mev[BSTATE] & cur.BUTTON1_CLICKED:
 scr.addstr(20,0,"\nPressed button 1")
 scr.refresh()

cur.wrapper(main)

9.3 Putting it all Together
That's pretty much all there is to interfacing with a mouse. Let's create the
same menu and enable mouse interaction. To make things simpler, key
handling is removed.

41

NCURSES Programming HOWTO

Example 11. Access the menu with mouse!

import curses as cur
define global constants
X = 1
Y = 2
BSTATE = -1
WIDTH=30
HEIGHT=10
choices = [
 "Choice 1",
 "Choice 2",
 "Choice 3",
 "Choice 4",
 "Exit",
]
n_choices = len(choices)

def print_menu(m_win):
 x = 2
 y = 2
 m_win.box(0, 0)
 for n,choice in enumerate(choices):
 m_win.addstr(y+n, x, choice)
 m_win.refresh()

determine if mouse click is inside window
def in_window(win, event):
 y,x = win.getbegyx() # get window origin
 h,w = win.getmaxyx() # get window height/width
 return (event[Y] >= y + 2 and
 event[Y] <= y + n_choices + 1 and
 event[X] >= x + 2 and
 event[X] <= x + w -1)

get the choices index the user clicked on
def report_choice(win,event):
 y,x = win.getbegyx()
 y += 2 # account for borders & margins

 for n,item in enumerate(choices):
 if event[Y]-y == n: # we pressed on this item
 break;
 if n == n_choices-1: return -1
 else: return n

def main(scr):
 cur.curs_set(0) # make cursor invisible

42

Interfacing with the Mouse

 scr.clear()

 # Try to put the window in the middle of screen
 choice = 0
 choice_fmt = "Choice made is : %d String Chosen is '%10s'"
 startx = (cur.COLS - WIDTH) // 2
 starty = (cur.LINES - HEIGHT) // 2
 scr.addstr(cur.LINES-1, 1, "Click on Exit to quit")
 scr.refresh()

 # Print the menu for the first time
 menu_win = cur.newwin(HEIGHT, WIDTH, starty, startx);
 menu_win.keypad(True) # to receive mouse events inside window
 print_menu(menu_win)

 # Get all the mouse events
 cur.mousemask(cur.ALL_MOUSE_EVENTS)

 while True:
 c = menu_win.getch()
 if c in [ord('q'),ord('Q')]:
 break
 if c == cur.KEY_MOUSE:
 event = cur.getmouse()
 # When the user clicks left mouse button in the menu box
 if ((event[BSTATE] & cur.BUTTON1_CLICKED) and
 in_window(menu_win,event)):
 choice = report_choice(menu_win, event)
 if choice == -1: # Exit chosen
 break
 else:
 scr.addstr(cur.LINES-5, 1,
 choice_fmt % (choice, choices[choice]))
 scr.refresh()
 print_menu(menu_win)

cur.endwin()

I’ll leave it as an exercise for the reader to combine examples 10 and 11 to
handle both mouse and key navigation plus text attributes.

43

NCURSES Programming HOWTO

9.4 Miscellaneous Functions
The curses.mouseinterval() function sets the maximum time (in thousands
of a second) that can elapse between press and release events in order for
them to be recognized as a click. This function returns the previous interval
value. The default is one fifth of a second.

There is also a function to push a mouse event onto the event queue:

curses.ungetmouse(id,x,y,z,bstate)

This can be used to push back an existing event or even to push a new
artificial mouse event onto the queue for later processing. These are rarely
used in practice but occasionally can be useful.

44

10Screen Manipulation
In this section, we will look into some methods, which allow us to manage the
screen efficiently and to write some fancy programs. This is especially
important in writing games.

10.1 getyx() functions
The window method getyx() can be used to find out the present cursor
coordinates within the window. That is, the y,x values returned are relative
coordinates not screen coordinates.

The getparyx() method gets the beginning coordinates of the sub window
relative to its parent window. This is sometimes useful to update a sub-
window. When designing fancy stuff like writing multiple menus, it becomes
difficult to store the menu positions, their first option coordinates etc. A
possible solution to this problem, is to create menus in sub-windows and later
find the starting coordinates of the menus by using getparyx().

The getbegyx() and getmaxyx() methods store the current window's
beginning and maximum coordinates. You saw those used in example 11 for
the in_window() function.

These methods are useful in the same way as above in managing windows and
sub windows effectively.

10.2 Screen Dumping
While writing games, some times it becomes necessary to store the state of
the screen and restore it back to the same state. In C curses there is a
function, scr_dump() that can be used to dump the screen contents to a file
given as an argument. Later it can be restored by a scr_restore() function.
Unfortunately these functions are not present in the Python implementation of
curses, so we must do some extra work.

10.3 Window Dumping
To store and restore windows, the methods window.putwin(binfile) and
curses.getwin(binfile) can be used. putwin() puts the present window
state into a file, opened in binary write mode, which can be later restored by
getwin() using the same binary file in read mode. The method returns a
window object, just like calling curses.newwin()

45

NCURSES Programming HOWTO

Example 11b Save/restore screen demonstration

import curses as cur
import os

def save_windows(winlist, path="/tmp"):
 for num,win in enumerate(winlist):
 fname = path+"/win"+str(num)+".cur"
 with open(fname,'wb') as f:
 win.putwin(f)

def restore_windows(path="/tmp"):
 files = [f for f in os.listdir(path) if f.endswith('.cur')]
 files.sort()
 windows = []
 for f in files:
 fn = os.path.join(path,f)
 win = cur.getwin(open(fn, 'rb'))
 windows.append(win)
 return windows

def main(scr):
 # set up screen and initialise colors
 cur.init_pair(1, cur.COLOR_BLUE,cur.COLOR_YELLOW)
 cur.init_pair(2, cur.COLOR_WHITE, cur.COLOR_BLUE)
 cur.init_pair(3, cur.COLOR_BLACK, cur.COLOR_RED)
 scr.bkgd(' ', cur.color_pair(1))
 scr.refresh()

 # create 2 new colored windows
 win1 = cur.newwin(3,10,cur.LINES//4,cur.COLS//4)
 win1.bkgd(' ',cur.color_pair(2))
 win1.box(0,0)
 win1.refresh()

 win2 = cur.newwin(3,10,cur.LINES//4,(cur.COLS//4)+30)
 win2.bkgd('.',cur.color_pair(3))
 win2.box(0,0)
 win2.refresh()

 # save this screen configuration as our "home screen"
 save_windows([scr,win1,win2])

 # now clear screen and reset colors
 scr.addstr(cur.LINES-2,1, "Hit a key to clear...")
 scr.getch()
 scr.clear()
 scr.bkgd(' ',cur.A_NORMAL)

46

Screen Manipulation

 scr.refresh()
 scr.getch()

 # now restore the old screen
 wins = restore_windows()
 for win in wins:
 win.refresh()

 wins[0].addstr(20,2,"Hit enter to exit...")
 wins[0].refresh()

 scr.getch()

cur.wrapper(main)

Note that we created two new functions to save and restore the windows and
these used the curses module functions to do the work. We pass the list of
windows to be saved (in the order in which they must be restored) and an
optional path argument. The restore function reads all of the window files in
the path and returns them as a list of window objects. We can then refresh
each object to recreate the original screen at the time of saving. This is, of
course, a simplistic example relying on the numbering of the windows to
control sequence. That would fail if there were more than 10 windows, in
which case a more robust file naming scheme would need to be designed.
Similarly using /tmp as a save folder is only useful for short term storage, a
dedicated project folder would be safer.

Note that this facility only saves and restores the screen not the application
data. You need to recreate the data yourself, possibly by saving/restoring
them using standard Python techniques such as the pickle or shelve modules
or a database.

47

11Miscellaneous features
Now you know enough features to write a good curses program, with all bells
and whistles. There are some miscellaneous functions which are useful in
various cases. Let's go headlong into some of those.

11.1 curs_set()
This function can be used to make the cursor invisible. The parameter to this
function should be 0 : invisible or 1 : normal or 2 : very visible (usually bold).
We saw this function being used back in Examples 7,8 and 11.

11.2 Temporarily Leaving Curses Mode
Some times you may want to get back to “cooked mode” (normal line buffering
mode) temporarily. In such a case you will first need to save the tty modes
with a call to def_prog_mode() and then call endwin() to end the curses
mode. This will leave you in the original tty mode. To get back to curses once
you are done, call reset_prog_mode() . This function returns the tty to the
state stored by def_prog_mode(). Then do refresh(), and you are back to the
curses mode. Here is an example showing the sequence of things to be done.

Example 12. Temporarily Leaving Curses Mode

import curses as cur
import os,time

def main(scr):
 scr.addstr("Hit return to leave curses", cur.A_REVERSE)
 scr.refresh()
 scr.getch()

 cur.def_prog_mode() # Save the tty modes
 cur.endwin() # End curses mode temporarily
 # Use the normal python commands for input/output etc
 os.system("clear; stty echo -nl") # ensure terminal restored fully
 print ("Back in terminal mode")
 time.sleep(1)
 input("Hit return to go back to curses")

 cur.reset_prog_mode() # Return to the previous tty mode
 scr.refresh() # restore the Screen contents
 scr.addstr(1,1,"Welcome back!", cur.A_UNDERLINE)
 scr.addstr(22,0,"Hit a key to exit...")
 scr.refresh()

49

NCURSES Programming HOWTO

 scr.getch()

cur.wrapper(main)

11.3 ACS_ Variables
If you have ever programmed in DOS, you know about those nifty characters
in the extended character set. They are printable only on some terminals.
Curses functions like box() use these characters. All these variables start with
ACS meaning Alternative Character Set. You might have noticed me using
these characters in some of the programs above. Here's an example showing
some of the ACS characters. The full list is detailed in the Python curses
documentation.

Example 13. ACS Variables Example

import curses as cur

scr = cur.initscr()
scr.addstr("Upper left corner \t")
scr.addch(cur.ACS_ULCORNER)
scr.addstr("\nLower left corner \t")
scr.addch(cur.ACS_LLCORNER)
scr.addstr("\nLower right corner \t")
scr.addch(cur.ACS_LRCORNER)
scr.addstr("\nTee pointing right \t")
scr.addch(cur.ACS_LTEE)
scr.addstr("\nTee pointing left \t")
scr.addch(cur.ACS_RTEE)
scr.addstr("\nTee pointing up \t")
scr.addch(cur.ACS_BTEE)

scr.getch()
cur.endwin()

11.4 And finally...
There are a number of other functions and methods in the curses module.
Many of them are used to find out information about the terminal capabilities
by querying the terminfo database. Others handle so called “wide characters”.
Still others control graphics and the refresh mechanism. These are outside the
scope of this tutorial but are described in the curses module documentation.

50

12curses.panel module
Now that you are proficient in curses, you wanted to do some thing big. You
created a lot of overlapping windows to give a professional windows-type look.
Unfortunately, it soon becomes difficult to manage these.

The multiple refreshes and updates plunge you into a nightmare. The
overlapping windows create blotches, whenever you forget to refresh the
windows in the proper order. Don't despair. There's an elegant solution
provided in the panels module. In the words of developers of ncurses

When your interface design is such that windows may dive deeper into
the visibility stack or pop to the top at runtime, the resulting book-
keeping can be tedious and difficult to get right.

Hence the panel module.

If you have lot of overlapping windows, then the panel module is the way to
go. It obviates the need of doing a series of noutrefresh() and doupdate()
(we haven’t discussed these but essentially they provide a deferred refresh)
and relieves the burden of doing it correctly (bottom up). The library
maintains information about the order of windows, their overlapping and it
updates the screen properly. So why wait? Let's take a close peek into
curses.panel.

12.1 The Basics
A panel object is a window that is implicitly treated as part of a deck including
all other panel objects. The deck is treated as a stack with the top panel being
completely visible and the other panels may or may not be obscured according
to their positions. So the basic idea is to create a stack of overlapping panels
and use the panel module to display them correctly. There is a method similar
to refresh() which, when called , displays panels in the correct order.
Methods are provided to hide or show panels, move panels, change size etc.
The overlapping problem is managed by the panels library during all the calls
to these methods.

The general flow of a panel program goes like this:

1. Create the windows (with curses.newwin()) to be attached to the
panels.

2. Create panels with the chosen visibility order. Stack them up according
to the desired visibility. The function panel.new_panel() is used to
created panels.

3. Call panel.update_panels() to write the panels to the virtual screen in
correct visibility order. Do a window.doupdate() to show it on the
screen.

51

NCURSES Programming HOWTO

4. Manipulate the panels with panel.show(), panel.hide(),
panel.move() etc. Make use of helper methods like panel.hidden()
and panel.window(). Make use of “user pointer” to store custom data
for a panel. Use the methods panel.set_userptr(object) and
panel.userptr() to set and get the user pointer for a panel. (A user
pointer is a reference to an object, which can be any arbitrary Python
object type. The name is a throw-back to curses C origins.)

5. When you are done with the panel use del() to delete the panel.

Let's make the concepts clear with some programs. The following is a simple
program which creates 3 overlapping panels and shows them on the screen.

Example 14. Panel basics

import curses as cur
import curses.panel as pan

def main(scr):
 lines = 10
 cols = 40
 y = 2
 x = 4
 my_wins = []
 my_panels = []

 cur.start_color()
 cur.init_pair(1, cur.COLOR_WHITE,cur.COLOR_RED)
 cur.init_pair(2, cur.COLOR_BLUE,cur.COLOR_YELLOW)
 cur.init_pair(3, cur.COLOR_BLACK,cur.COLOR_GREEN)

 # Create overlapping windows for the panels
 my_wins.append(cur.newwin(lines, cols, y, x))
 my_wins.append(cur.newwin(lines, cols, y+1, x+5))
 my_wins.append(cur.newwin(lines, cols, y+2, x+10))

 # Create borders around windows to see the effect
 for win in my_wins:
 win.box(0, 0)

 # Attach a panel to each window - order bottom up
 my_panels.append(pan.new_panel(my_wins[0])) # order: stdscr−0
 my_panels.append(pan.new_panel(my_wins[1])) # order: stdscr−0−1
 my_panels.append(pan.new_panel(my_wins[2])) # order: stdscr−0−1−2

 # write some identifying text
 my_wins[0].addstr(1,1,"Window 1",cur.color_pair(1))
 my_wins[1].addstr(1,1,"Window 2",cur.color_pair(2))
 my_wins[2].addstr(1,1,"Window 3",cur.color_pair(3))

52

curses.panel module

 # Update the stacking order. panel 2 will be on top
 pan.update_panels()
 cur.doupdate() # Show it on the screen

 scr.getch() # pause...

cur.wrapper(main)

As you can see, the program follows the simple flow as explained above. The
windows are created with curses.newwin() and then they are attached to
panels with panel.new_panel(). As we attach one panel after another, the
stack of panels gets updated. To put them on screen panel.update_panels()
and curses.doupdate() are called.

12.2 Panel Window Browsing
A slightly more complex example is given below. This program creates 3
windows which can be cycled through using the tab key. Have a look at the
code.

Example 15. Panel Window Browsing Example

import curses as cur
import curses.panel as pan

NLINES=10
NCOLS=40
KEY_TAB = 9 # define a new Key constant

def main(scr):
 my_panels = []
 scr.keypad(True)

 # Initialize all the colors
 cur.start_color()
 cur.init_pair(1, cur.COLOR_RED, cur.COLOR_BLACK);
 cur.init_pair(2, cur.COLOR_GREEN, cur.COLOR_BLACK);
 cur.init_pair(3, cur.COLOR_BLUE, cur.COLOR_BLACK);
 cur.init_pair(4, cur.COLOR_CYAN, cur.COLOR_BLACK);

 my_wins = init_wins(3)

 # Attach a panel to each window, Order is bottom up
 my_panels.append(pan.new_panel(my_wins[0]))
 my_panels.append(pan.new_panel(my_wins[1]))
 my_panels.append(pan.new_panel(my_wins[2]))

53

NCURSES Programming HOWTO

 # Set up the user pointers to the next panel
 my_panels[0].set_userptr(my_panels[1])
 my_panels[1].set_userptr(my_panels[2])
 my_panels[2].set_userptr(my_panels[0])

 # Update the stacking order. panel 2 will be on top
 pan.update_panels()

 # Show it on the screen
 scr.attron(cur.color_pair(4))
 scr.addstr(cur.LINES-2, 0,
 "Use tab to browse through the windows (F1 to Exit)")
 scr.attroff(cur.color_pair(4))
 cur.doupdate()

 top = my_panels[-1]

 # start event loop
 while True:
 ch = scr.getch()
 if ch == cur.KEY_F1:
 break # exit event loop
 if ch == KEY_TAB:
 next_top = pan.top_panel().userptr()
 next_top.top()
 pan.update_panels();
 cur.doupdate()

Create all the windows
def init_wins(n_wins):
 y = 2
 x = 10
 wins = []
 for n in range(n_wins):
 win = cur.newwin(NLINES, NCOLS, y+(3*n), x+(7*n))
 lbl = "Window Number %d" % (n+1)
 win_show(win, lbl, n+1)
 wins.append(win)
 return wins

Show the window with a border and a label
def win_show(win, label, label_color):
 starty,startx = win.getbegyx()
 height,width = win.getmaxyx()
 win.box(0, 0)
 win.addch(2, 0, cur.ACS_LTEE)
 win.hline(2, 1, cur.ACS_HLINE, width-2)

54

curses.panel module

 win.addch(2, width-1, cur.ACS_RTEE)
 print_in_middle(win, 1, label, cur.color_pair(label_color))

Print label in middle of line
def print_in_middle(win, line, label, col_pair):
 if win == None:
 win = cur.stdscr
 _,width = win.getmaxyx()
 length = len(label)
 x = (width-length) // 2
 win.addstr(line, x, label, col_pair)
 win.attroff(col_pair)
 win.refresh()

cur.wrapper(main)

12.3 Using User Pointers
In the above example I used user pointers to find out the next window in the
cycle. We can attach custom information to the panel by specifying a user
pointer, which can point to any information you want to store. In this case I
stored the pointer to the next panel in the cycle. The user pointer for a panel
can be set with the method Panel.set_userptr(). It can be accessed using
the method Panel.userptr() which will return the user pointer. After finding
the next panel in the cycle it's brought to the top by calling its method
Panel.top().

12.4 Moving and Resizing Panels
The function move_panel() can be used to move a panel to the desired
location. It does not change the position of the panel in the stack. Make sure
that you use move_panel() instead of using mvwin() on the window associated
with the panel.

Resizing a panel is slightly complex. There is no straight forward function just
to resize the window associated with a panel. A solution to resize a panel is to
create a new window with the desired sizes, change the window associated
with the panel using replace_panel(). Don't forget to delete the old window.
The window associated with a panel can be found by using the function
panel_window().

The following program shows these concepts, in supposedly simple program.
You can cycle through the window with <TAB> as usual. To resize or move
the active panel press 'r' for resize 'm' for moving. Then use arrow keys to
resize or move it to the desired way and press enter to end your resizing or
moving. This example makes use of a user defined class to hold the data
required for the operations and stores it in the userptr field.

Example 16. Panel Moving and Resizing example

55

NCURSES Programming HOWTO

import curses as cur
import curses.panel as pan

class Panel_Data: # data record for panel userptr
 def __init__(self, x, y, w, h, label, color):
 self.x = x
 self.y = y
 self.w = w
 self.h = h
 self.label = label
 self.color = color
 self.next = None

NLINES = 10
NCOLS = 40
KEY_TAB = 9
KEY_RETURN = 10

def main(scr):
 resize,move = False,False

 # Initialize all the colors
 cur.init_pair(1, cur.COLOR_RED, cur.COLOR_BLACK)
 cur.init_pair(2, cur.COLOR_GREEN, cur.COLOR_BLACK)
 cur.init_pair(3, cur.COLOR_BLUE, cur.COLOR_BLACK)
 cur.init_pair(4, cur.COLOR_CYAN, cur.COLOR_BLACK)

 # Attach a panel to each window. Order is bottom up
 my_wins = init_wins(4) # create 4 windows
 my_panels = []
 for w in my_wins:
 my_panels.append(pan.new_panel(w))
 set_user_ptrs(my_panels)
 pan.update_panels()

 # Show it on the screen
 scr.attron(cur.color_pair(4))
 scr.addstr(cur.LINES-3, 0, "Use 'm' for moving, 'r' for resizing")
 scr.addstr(cur.LINES-2, 0, "Use tab to select window (F1 to Exit)")
 scr.attroff(cur.color_pair(4))
 cur.doupdate()

 stack_top = my_panels[-1] # use last one added
 top_data = stack_top.userptr()

 # start event loop

56

curses.panel module

 while True:
 ch = scr.getch()
 if ch == cur.KEY_F1: # exit
 break
 if ch == KEY_TAB:
 stack_top = top_data.next # get next panel
 top_data = stack_top.userptr() # get new panel data
 stack_top.top() # set new top panel
 elif ch == ord('r'): # Re−Size
 resize = True
 scr.attron(cur.color_pair(4));
 scr.addstr(cur.LINES-4, 0,
 "Entered Resizing :Use Arrows to resize, <ENTER> to end")
 scr.refresh()
 scr.attroff(cur.color_pair(4))
 elif ch == ord('m'): # Move
 move = True
 scr.attron(cur.color_pair(4))
 scr.addstr(cur.LINES-4, 0,
 "Entered Moving: Use Arrows to Move, <ENTER> to end")
 scr.refresh()
 scr.attroff(cur.color_pair(4))
 elif ch == cur.KEY_LEFT:
 if resize:
 top_data.x -= 1
 top_data.w += 1
 if move:
 top_data.x -= 1
 elif ch == cur.KEY_RIGHT:
 if resize:
 top_data.x += 1
 top_data.w -= 1
 if move:
 top_data.x += 1
 elif ch == cur.KEY_UP:
 if resize:
 top_data.y -= 1
 top_data.h += 1
 if move:
 top_data.y -= 1
 elif ch == cur.KEY_DOWN:
 if resize:
 top_data.y += 1
 top_data.h -= 1
 if move:
 top_data.y += 1
 elif ch == KEY_RETURN:

57

NCURSES Programming HOWTO

 scr.move(cur.LINES-4, 0)
 scr.clrtoeol();
 scr.refresh()
 if resize:
 resize = False
 new_win = cur.newwin(top_data.h, top_data.w,
 top_data.y, top_data.x)
 win_show(new_win, top_data.label, top_data.color)
 stack_top.replace(new_win)
 stack_top.move(top_data.y, top_data.x) # avoids gaps
 if move:
 move = False
 stack_top.move(top_data.y, top_data.x)
 scr.attron(cur.color_pair(4))
 scr.addstr(cur.LINES-3, 0,
 "Use 'm' for moving, 'r' for resizing")
 scr.addstr(cur.LINES-2, 0,
 "Use tab to browse through the windows (F1 to Exit)")
 scr.attroff(cur.color_pair(4))
 scr.refresh()
 pan.update_panels()
 cur.doupdate()

Set the userptr data for individual panels
def set_user_ptrs(panels):
 ptrs = []
 for n,panel in enumerate(panels):
 w = panel.window()
 y,x = w.getbegyx()
 h,w = w.getmaxyx()
 data = Panel_Data(x,y,w,h,"Window Number %d" % (n+1), n+1)
 if n == len(panels)-1: # at last panel
 data.next = panels[0]
 else: data.next = panels[n+1]
 panel.set_userptr(data)

Create all the windows
def init_wins(n_wins):
 y = 2
 x = 10
 wins = []
 for n in range(n_wins):
 win = cur.newwin(NLINES, NCOLS, y+(3*n), x+(7*n))
 lbl = "Window Number %d" % (n+1)
 win_show(win, lbl, n+1)
 wins.append(win)
 return wins

58

curses.panel module

Show the window with a border and a label
def win_show(win, label, label_color):
 starty,startx = win.getbegyx()
 height,width = win.getmaxyx()
 win.box(0, 0)
 win.addch(2, 0, cur.ACS_LTEE)
 win.hline(2, 1, cur.ACS_HLINE, width-2)
 win.addch(2, width-1, cur.ACS_RTEE)
 print_in_middle(win, 1, label, cur.color_pair(label_color))
 win.refresh()

def print_in_middle(win, line, label, col_pair):
 if win == None:
 win = cur.stdscr
 _,width = win.getmaxyx()
 length = len(label)
 x = (width-length) // 2
 win.addstr(line, x, label, col_pair)
 win.attroff(col_pair)
 win.refresh()

cur.wrapper(main)

Concentrate on the main while loop. Once it finds out the type of key pressed,
it takes appropriate action. If 'r' is pressed resizing mode is started. After this
the new sizes are updated as the user presses the arrow keys.

When the user presses <ENTER> present selection ends and panel is resized
by using the concept explained.

When the user presses 'm' the move mode starts. This is a bit simpler than
resizing. As the arrow keys are pressed the new position is updated and
pressing of <ENTER> causes the panel to be moved by calling the move()
method.

While in resizing or moving modes the program doesn't show how the window
is getting resized or moved. It's left as an exercise to the reader to print a
dotted border showng the new size or position.

In this program the user data which is stored in the Panel_Data objects, plays
very important role in finding the associated information with a panel. As
written in the comments, the Panel_Data stores the panel sizes, label, label
color and the next panel in the cycle.

Note: The move() method is required in both the move and resize actions
since without it the window will not draw itself completely, there will be
missing blocks.

59

NCURSES Programming HOWTO

12.5 Hiding and Showing Panels
A panel can be hidden by using the method Panel.hide(). This method
merely removes it form the stack of panels, thus hiding it on the screen once
you do panel.update_panels() and cur.doupdate(). It doesn't destroy the
Panel object structure associated with the hidden panel. It can be shown again
by using the Panel.show() method.

The following program shows the hiding of panels. Press 'a' or 'b' or 'c' to
show or hide first, second and third windows respectively. It uses a user data
with a small variable hide, which keeps track of whether the window is hidden
or not. (There may be a bug in the underlying ncurses panel code for the
Panel.hidden() method which tells whether a panel is hidden or not. A bug
report was presented by Michael Andres. It is not clear whether this has been
fixed at the time of writing.)

60

http://www.geocrawler.com/archives/3/344/1999/9/0/2643549/
http://www.geocrawler.com/archives/3/344/1999/9/0/2643549/

curses.panel module

Example 17. Panel Hiding and Showing example

import curses as cur
import curses.panel as pan

NLINES = 10
NCOLS = 40
VISIBLE = True
HIDDEN = False

def main(scr):

 # Initialize all the colors
 cur.init_pair(1, cur.COLOR_RED, cur.COLOR_BLACK)
 cur.init_pair(2, cur.COLOR_GREEN, cur.COLOR_BLACK)
 cur.init_pair(3, cur.COLOR_BLUE, cur.COLOR_BLACK)
 cur.init_pair(4, cur.COLOR_CYAN, cur.COLOR_BLACK)

 # Attach a panel to each window. Set all visible
 my_wins = init_wins(4) # create 4 wndows
 my_panels = []
 for w in my_wins:
 my_panels.append(pan.new_panel(w))
 my_panels[-1].set_userptr(VISIBLE)
 pan.update_panels()

 # Show it on the screen
 scr.attron(cur.color_pair(4))
 scr.addstr(cur.LINES-3, 0, "Use '1-4' to toggle visibility")
 scr.addstr(cur.LINES-2, 0, "F1 to Exit")
 scr.attroff(cur.color_pair(4))
 cur.doupdate()

 # Start event loop
 while True:
 ch = scr.getch()
 if ch == cur.KEY_F1:
 break
 if ch in [ord('1'), ord('2'), ord('3'), ord('4')]:
 index = int(chr(ch)) - 1 # zero index!
 thePanel = my_panels[index]
 if thePanel.userptr() == HIDDEN:
 thePanel.set_userptr(VISIBLE)
 thePanel.show()
 else:
 thePanel.set_userptr(HIDDEN)
 thePanel.hide()

61

NCURSES Programming HOWTO

 pan.update_panels()
 cur.doupdate()

Create all the windows
def init_wins(n_wins):
 y = 2
 x = 10
 wins = []
 for n in range(n_wins):
 win = cur.newwin(NLINES, NCOLS, y+(3*n), x+(7*n))
 lbl = "Window Number %d" % (n+1)
 win_show(win, lbl, n+1)
 wins.append(win)
 return wins

Show the window with a border and a label
def win_show(win, label, label_color):
 starty,startx = win.getbegyx()
 height,width = win.getmaxyx()
 win.box(0, 0)
 win.addch(2, 0, cur.ACS_LTEE)
 win.hline(2, 1, cur.ACS_HLINE, width-2)
 win.addch(2, width-1, cur.ACS_RTEE)
 print_in_middle(win, 1, label, cur.color_pair(label_color))
 win.refresh()

def print_in_middle(win, line, label, col_pair):
 if win == None:
 win = cur.stdscr
 _,width = win.getmaxyx()
 length = len(label)
 x = (width-length) // 2
 win.addstr(line, x, label, col_pair)
 win.attroff(col_pair)
 win.refresh()

cur.wrapper(main)

12.6 panel_above() & panel_below() Methods
The Panel.above() and Panel.below() methods can be used to find out the
panel above and below a panel. If the argument to these functions is None,
then they return the top panel and bottom panel respectively.

62

13Tools and Widget Libraries
Now that you have seen the capabilities of ncurses and its sister library
panels, you are rolling your sleeves up and gearing for a project that heavily
manipulates the screen. However, it can be pretty difficult to write and
maintain complex GUI widgets in plain ncurses or even with panels. There are
some other ready -to-use tools and widget libraries that can be used instead of
writing your own widgets. You can use some of them, get ideas from the code,
or even extend them. Unfortunately most of the C libraries are not ported to
Python so you would have to create the wrapper yourself. There are some
curses extras available in the PyPI repository and a search might be worth
while. (https://pypi.org/)

13.1 curses.textpad
While Python does not support all of the C libraries for curses there is one
bonus feature that is available in Python that is not part of regular curses and
that is a text editor widget that supports the basic emacs keystrokes (Ctrl-a =
start of line, Ctrl-k = delete to end of line, etc.) It also supports the cursor
movement arrow keys etc. It is known as the textpad and this section provides
a basic example.

Example 18 curses.textpad example

import curses as cur
from curses.textpad import Textbox

def main(scr):
 s = "Here is a string to insert..."
 scr.addstr(0,0,"Edit the text then hit Ctrl-G to exit")
 scr.refresh()

 # create the text box with border around the outside.
 tb_border = cur.newwin(12,52,4,4)
 tb_border.box(0,0)
 tb_border.refresh()
 tb_body = cur.newwin(10,50,5,5)
 tb = Textbox(tb_body)

 for c in s: #insert the starting text
 tb.do_command(c)
 tb.edit() # start the editor running, Ctr-G ends
 s2 = tb.gather() # fetch the contents

 scr.clear() # clear the screen

63

https://pypi.org/

NCURSES Programming HOWTO

 scr.addstr(0,0,"The text in the box was:\n")
 scr.addstr(3,0,s2) # display edited contents of textbox
 scr.refresh()

 scr.getch()

cur.wrapper(main)

Note that by default the textbox has no border, you need to create a window
one row and one column larger all round and add the border there.

13.2 dialog
The dialog command is a real gem in making professional-looking dialog
boxes with ease. It creates a variety of dialog boxes, menus, check lists etc. It
is usually installed by default on Linux systems. The man page has the details.

dialog was initially designed to be used with shell scripts. However there is a
Python wrapper of dialog that can be accessed programmatically, including
from within curses. You need dialog to be installed on your OS, but most
Linux systems include it. The Python module can be installed from the Python
Package Index (PyPI) with

$ python3 -m pip install pythondialog

A simple example showing a curses program displaying a message using
dialog follows.

Example 19 curses and dialog example

import curses as cur
import dialog

def main(scr):
 d = dialog.Dialog() # initialize the dialog

 # use curses to get the input.
 cur.echo() # show the input as typed
 scr.addstr(3,3,"Hello, what's your name? ")
 scr.refresh()
 nm = scr.getstr()

 # use dialog to display the name
 d.msgbox("Hi %s, nice to meet you." % nm.decode('utf-8'))

 # go back to curses to clear up
 scr.clear()

64

Tools and Widget Libraries

 scr.addstr("\nGoodbye")
 scr.refresh()
 cur.napms(1000)

cur.wrapper(main)

The dialog system includes over 20 different widgets including file browsers,
menus, progress gauges, text browsers, calendars and more. The web page
provides a tutorial and complete reference:

http://pythondialog.sourceforge.net/doc/index.html

65

http://pythondialog.sourceforge.net/doc/index.html

14A Case Study – The Totalizer
So far we have used curses to build some short demonstration programs. In
this chapter I want to look at a more real-world type of project using curses as
the display mechanism but incorporating it into an object-oriented application,
typical of the sort created for real users. We will build a mini spreadsheet-like
application with a grid display of cells into which data can be entered and the
total of the current column displayed. We will build it from a set of classes
which are sufficiently general to be used for other types of grid based
applications. It will incorporate some error checking although not to full
industrial standards to save space. For the same reasons we will not write (or
even discuss) unit tests such as would be used in a real project.

14.1 Totalizer Design Summary
The design for the Totalizer application is shown in the following simplified
UML diagram.

67

Cell
#win
+value

+refresh()
+reverse()
+__str__()

Grid
#win
#size
#cell_size
#headsOn
#select_start
#select_end
#selected

#map()
#get_selection()
+move()
+clear()
+heads()
+cell_at()
+make_selection()
+deselect()
+refresh()
+__setitem__()
+__getitem__()

SummingGrid

+sum()

Totalizer
#win
#x0
#y0
#size
#cell_size
#selecting
#selection

#show_status()
#show_help()
+run()

Cursesuses uses

*

1

uses string

uses

BoundaryError

usesuses

NCURSES Programming HOWTO

The most basic class is the Cell, which simply holds a value and displays it. It
also performs the valuable service of abstracting most of the low level curses
code away from the higher level application classes. We can toggle inverse
video on or off.

The next level of abstraction is a Grid component which uses a table structure
of Cells and can, optionally, display headings for rows and columns. The
clients can move the cursor to individual cells and store values into specified
cells. There is a specialization of the Grid called a SummingGrid which adds
the ability to sum the column in which the cursor is currently located.

Finally, we have the Totalizer application class. This creates a SummingGrid
and starts an event loop. It processes the navigation events and the data
assignment, summation and exit commands.

Let’s look at each of these classes in more detail.

14.2 The Cell Class
The Cell class is based on a curses subwindow. It stores the original data in a
“private” field, _value which is exposed as a Python property, value. There is
a private refresh() method (conventionally called _refresh() in Python)
which simply refreshes the underlying curses subwindow.

The public reverse() operation turns inverse video on or off for the cell.

Setting the cell value automatically updates the cell display. A ValueError is
raised if the value is too big to fit the cell display. A __str__() operator is
provided to simplify the display code.

The code is shown below:

import curses as cur

class Cell:
 def __init__(self, win, w,y,x, v=None):
 self.att = cur.A_NORMAL
 self.width = w
 self.isReversed = False
 self.theCell = win.subwin(3,w+2,y,x)
 self.theCell.box(0,0)
 self.value = v
 self.refresh()

 @property
 def value(self): return self._value

 @value.setter
 def value(self,v):
 v = v if v else ''

68

A Case Study – The Totalizer

 if len(str(v)) > self.width:
 raise ValueError("%d too large value for cell"% v)
 self._value = v # actually store the value
 self.theCell.addstr(1,1,str(v).ljust(self.width))
 self.refresh() # now display it

 def reverse(self):
 self.att = cur.A_NORMAL if self.isReversed else cur.A_REVERSE
 self.isReversed = not self.isReversed
 self.refresh()

 def refresh(self):
 self.theCell.attrset(self.att)
 self.theCell.box(0,0)
 self.theCell.addstr(1,1,str(self.value).ljust(self.width))
 self.theCell.refresh()

 def __str__(self):
 return str(self.value)

14.3 The Grid Class
The Grid is essentially a two dimensional array of Cells. In a sense it is like a
bigger form of a curses window (which is an array of chars) and supports
similar concepts.

The move() operation, like its curses counterpart, locates the cursor into a cell
based on grid y,x coordinates. There is a private _map() method that converts
the grid coordinates into underlying window coordinates so that the curses
move() call ends up in the appropriate place. The coordinate values are
checked for size and if outside the grid boundaries a bespoke BoundaryError
is raised.

The clear() operation simply deletes all of the cell contents and resets the
cursor to the first cell.

The heads() operation turns on a spreadsheet-like header display with
numbers along the top row and uppercase letters down the leftmost column,
both displayed in inverse video. The application does not (currently!) use
these letters and numbers for navigation, they are merely for the users
convenience in locating specific cells.

A cell_at() method translates the window coordinates into a grid cell
coordinate-pair which can be used by the move() method. This is needed to
handle mouse events.

The make_selection() and deselect() operations create and remove a
highlighted selection area within the grid. A get_selection() private method
returns a list of cells within the current selection.

69

NCURSES Programming HOWTO

Finally, we implement the getitem/setitem pair of operators to provide
indexing into the grid. This allows clients to access cells as if using a table
directly. We only implent single a index which returns a list of Cells. This list
will handle the second index and the slicing operations needed for the sum()
method. It is a convenience feature which hides the internal cell array.

The code is as follows:

import curses as cur
from cell import Cell
import string

class BoundaryError(ValueError): pass

class Grid:
 ''' creates a grid of cells.
 Cells are accessed using grid rather than window
 coordinates. Allows movement to a cell, and reversing
 of display'''

 def __init__(self,win, ht, wd, y, x, cell_size=8):
 self.win = win
 self.headsOn = False
 self.selected = False
 self.select_start = None
 self.select_end = None
 self.size = (ht,wd)
 self.origin = (0,0) # initial origin with heads off
 self.yx = self.origin # initial active cell
 self.cell_size = cell_size
 self.cells = []
 for r in range(ht): # generate empty grid
 row_y = y + (r*3)
 row = [Cell(win,cell_size, row_y,col*(cell_size+2)+x)
 for col in range(wd)]
 self.cells.append(row)

 def _map(self,y,x): # helper function
 ''' maps grid coords to window coords'''
 wy = 1 + (3*y)
 wx = 1 + (self.cell_size+2) * x
 return wy,wx

70

A Case Study – The Totalizer

 def _get_selection(self):
 ‘’’ return a ist of all cells currently selected’’’
 if not self.selected:
 return []
 start_row,start_col = self.select_start
 end_row,end_col = self.select_end
 cells = []
 for row in range(start_row,end_row+1):
 for col in range(start_col,end_col+1):
 cells.append(self[row][col])
 return cells

 def move(self,y,x):
 ''' move cursor to cell y,x in grid'''
 if (y >= self.size[0] or # check within boundaries
 x >= self.size[1] or
 y < self.origin[0] or
 x < self.origin[1]):
 raise BoundaryError("%d or %d outside grid"%(y,x))
 ypt,xpt = self._map(y,x)
 self.win.move(ypt,xpt) # uses curses move()
 self.yx = (y,x)

 def clear(self):
 ‘’’ clear all cells ‘’’
 for row in self[self.origin[0]:]:
 for cell in row[self.origin[1]:]:
 cell.value = None
 cell.refresh()
 self.move(*self.origin)

 def heads(self):
 ''' insert numbers along row 0 and letters down col 0
 reverses cells in row 0 and column 0
 '''
 letters = string.ascii_uppercase
 for num,cell in enumerate(self.cells[0]):
 if num > 0:
 cell.value= str(num).center(self.cell_size)
 cell.reverse()
 for index,row in enumerate(self.cells[1:]):
 row[0].value = letters[index]
 row[0].reverse() for row in self[self.origin[0]]:
 for cell in row:
 cell.value = None
 self.headsOn = True
 self.origin = (1,1)

71

NCURSES Programming HOWTO

 self.move(*self.origin)

 def cell_at(self, y,x):
 ''' Find cell with containing curses coords y,x.
 return grid y,x coordinates of cell '''
 row = y//3 for row in self[self.origin[0]]:
 for cell in row:
 cell.value = None
 col = x//(self.cell_size+2)
 return row,col

 def make_selection(self,start,end):
 ''' show selected cells in inverse video and set flag attributes'''
 self.selected = True
 self.select_start = start
 self.select_end = end
 for row in range(start[0],end[0]+1):
 for col in range(start[1],end[1]+1):
 self[row][col].reverse()
 if start == end: # need to reinvert first cell
 self[start[0]][start[1]].reverse()

 def deselect(self):
 ''' deselect the grid by reversing cells and resetting attributes'''
 for row in range(self.select_start[0],self.select_end[0]+1):
 for col in range(self.select_start[1],self.select_end[1]+1):
 self[row][col].reverse()
 self.selected = False
 self.select_start = None
 self.select_end = None

 def refresh(self):
 ‘’’ redraw the grid ‘’’
 for row in self.cells:
 for cell in row:
 cell.refresh()

 # allow access to cells via indexing of grid
 def __setitem__(self,index,cell):
 self.cells[index] = cell

 def __getitem__(self,index):
 return self.cells[index]

72

A Case Study – The Totalizer

14.4 The SummingGrid Class
The SummingGrid class is a simple subclass of Grid. It adds a single operation,
sum(), which adds all the values in the current column which are not zero (or
null) and returns the result. It takes account of whether headers exist or not.
If a selection exists it returns the sum of all cells within the selection.

The code follows:

class SummingGrid(Grid):
 '''Adds ability to total a column to basic Grid'''

 def __init__(self,win,ht,wd,y,x, cell_size=8):
 super().__init__(win,ht,wd,y,x,cell_size)

 def sum(self,col):
 ''' sums all values in current column'''
 first = 1 if self.headsOn else 0
 if self.selected:
 cells = self._get_selection()
 vals = [cell.value for cell in cells if cell.value]
 else:
 vals = [row[col].value for row in self[first:] if row[col].value]
 return sum(vals)

14.5 The Totalizer Class
The Totalizer is the application class. It creates a SummingGrid and turns on
headers. Each cell displays itself as it is added and if it cannot fit into its
window curses will raise an error. There is a convenience method,
show_status(), for displaying messages on the bottom line of the window.
The show_help() method displays a new window with help instructions. Any
keypress or mouse click will close it and the grid will be refreshed. There is a
single public operation: run().

run() starts the event loop and processes the events. Allowed events include:

• arrow movements (or the vi editor key equivalents ‘hjkl’) to navigate the
grid (complete with boundary checking).

• “=” an assignment operation comprised of the equals sign followed by a
value, for example, typing “=42<RETURN>” will insert 42 into the
current cell and move the curse down to the next cell in the column.

• “+” which totals the current column (or selection if one is active),
displaying the result as a status message,

• “C” which clears the contents of the grid

73

NCURSES Programming HOWTO

• “S” which controls selection. The first ‘S’ starts a selection and the
chosen cell is highlighted. A second ‘S’ marks the end of the selection
and the range of cells is highlighted. Any addition operations while the
selection is active will apply to the selection. A third ‘S’ will deselect the
region returning things to normal.

• “X” exits the application.

Finally we handle mouse clicks to navigate to a new cell.

The code is as follows:

import curses as cur
from grid import Grid, BoundaryError

define mouse event indices
X_COORD = 1
Y_COORD = 2
BUTTON_STATE = 4

class Totalizer:
 ''' spreadsheet-like grid that can display totals of columns.
 values must be integers.'''

 help_string = "Press F1 for help, X to eXit."

 def __init__(self, win, ht,wd, cell_size=8):
 self.win = win
 self.size = (ht,wd)
 self.cell_size = cell_size
 self.selecting = False
 self.selection = None
 self.grid = SummingGrid(win,ht,wd, 0,0, cell_size)
 self.grid.heads()
 cur.mousemask(cur.ALL_MOUSE_EVENTS)

 def _show_status(self,msg):
 ''' display message on bottom line of window '''
 Y,X = self.win.getmaxyx()
 y,x = self.grid.yx
 self.win.addstr(Y-2,1, ' '*(X-2)) #clear line but not border
 self.win.addstr(Y-2,1, msg)
 self.grid.move(y,x) # move cursor back to active cell

 def _show_help(self):
 ‘’’Show help screen in new window, remove window on any key’’’

74

A Case Study – The Totalizer

 ht,wd = self.win.getmaxyx()
 top = (ht-15)//2
 left = (wd-50)//2
 win = cur.newwin(15,50,top,left)
 win.keypad(True) # accept mouse clicks and special keys
 win.box(0,0)
 win.addstr(1,2,"Arrow keys move cursor")
 win.addstr(3,2,"Mouse positions cursor")
 win.addstr(5,2,"=N<RETURN> inserts value")
 win.addstr(7,2,"+ Sums the current column")
 win.addstr(9,2,”S Start/end/cancel selection”)
 win.addstr(11,2,”C Clear grid”)
 win.addstr(13,2,"X eXit the application")
 win.refresh()
 win.getch() # any key or mouse click clears help screen
 win.erase()
 self.grid.refresh()
 self.grid.move(*self.grid.yx) # restore cursor to previous cell

 def run(self):
 ''' start the event loop, process the actions '''
 Y,X = self.win.getmaxyx()
 self.win.addstr(Y-3,1, self.help_string)
 self.grid.move(*self.grid.origin) # starting position
 while True:
 key = self.win.getch()
 if key == ord('X'): break
 if key == cur.KEY_F1:
 self._show_help()
 if key in [cur.KEY_UP, ord('k')]:
 y,x = self.grid.yx
 try: self.grid.move(y-1,x)
 except BoundaryError as e:
 self._show_status(e.args[0])
 elif key in [cur.KEY_DOWN, ord('j')]:
 y,x = self.grid.yx
 try: self.grid.move(y+1,x)
 except BoundaryError as e:
 self._show_status(e.args[0])
 elif key in [cur.KEY_LEFT, ord('h')]:
 y,x = self.grid.yx
 try: self.grid.move(y,x-1)
 except BoundaryError as e:
 self._show_status(e.args[0])
 elif key in [cur.KEY_RIGHT, ord('l')]:
 y,x = self.grid.yx
 try: self.grid.move(y,x+1)

75

NCURSES Programming HOWTO

 except BoundaryError as e:
 self._show_status(e.args[0])
 elif key == ord('='):
 val = self.win.getstr() # now read the data value
 y,x = self.grid.yx
 try:
 self.grid[y][x].value = int(val) #only want integers
 self.grid.move(y+1,x)
 except BoundaryError: pass # leave it as-is
 except ValueError:
 self._show_status("Error: invalid value - %s" % val)
 elif key == ord('+'):
 y,x = self.grid.yx
 tot = self.grid.sum(x)
 self._show_status("Column %d total = %d" % (x,tot))
 elif key == ord('S'):
 if not self.selecting and not self.selection: # first S
 self.selecting = True
 self.selection = self.grid.yx
 self.grid.make_selection(self.selection,self.selection)
 self._show_status("Selection ON")
 elif self.selecting: # second S
 self.selecting = False
 self.grid.make_selection(self.selection, self.grid.yx)
 self._show_status("Selection complete")
 else: # third S
 self.grid.deselect()
 self.selection = None
 self._show_status("Selection off")
 elif key == ord("C"):
 self.grid.clear()
 elif key == cur.KEY_MOUSE:
 m_event = cur.getmouse()
 if m_event[BUTTON_STATE] | cur.BUTTON1_CLICKED:
 m_y = m_event[Y_COORD]
 m_x = m_event[X_COORD]
 g_y,g_x = self.grid.cell_at(m_y,m_x)
 try: self.grid.move(g_y,g_x)
 except BoundaryError: pass # leave it as-is

14.6 The Driver Code
Finally the driver code for the application in the main() function is called by
the curses.wrapper(). It draws a box around stdscr then creates a
Totalizer. Finally the event loop is started by sending the run() message to
the instance.

76

A Case Study – The Totalizer

The code follows:

import curses as cur
...
def main(scr):
 scr.box(0,0)
 scr.refresh()
 totalizer = Totalizer(scr,7,10,6)
 totalizer.run()
...
if __name__ == "__main__": cur.wrapper(main)

The following screenshot of the finished application shows the grid with
headings, some entered values and the total of a selected range displayed at
the bottom. (Notice that negative numbers are handled correctly too.)

14.7 Things to Consider
The code is reasonably functional but could be improved in many ways.

• The error handling could be enhanced, for example, to prevent a
Totalizer bigger than the available window being created (or any curses
errors raised by the Cells could be caught).

77

NCURSES Programming HOWTO

• Extra operations could be added – for example a sort operation.. File
based saving and reading could be introduced (possibly utilizing the
dialog module to select folders and filenames). Ultimately, you could
reinvent the spreadsheet and relive the glory days of Visicalc, Lotus 123
and Supercalc.

• A right-click mouse menu could also be introduced, especially if more
operations were added. Simply pop up a new window, just as we did for
the help screen, with the list of options then allow the user to select one
before closing the menu window again and performing the chosen
operation.

• Different sub classes of grid could be used to build different applications
such as a text based grid for crossword puzzles and other word games,
or grids for games such as sudoku, oxo, magic square etc.

• The design of curses is not naturally conducive to the use of a Model-
View-Controller (MVC) framework but with some extra effort such a
framework could be constructed and thus have the data values stored
completely separately from the display components. In that scenario the
cells would become views of the data and the grid a view of the cells.
However, creating such an architecture would involve writing almost as
much code again as we have here.

All of these suggestions are left as exercises for the reader.

78

Just For Fun !!!

15Just For Fun !!!
This section describes a few programs written by Pradeep (using C curses)
just for fun. They don't signify a better programming practice or the best way
of using ncurses. They are provided here so as to allow beginners to get ideas.

If you fetch the code you can translate it into Python using the material in this
document combined with the curses module documentation.

Pradeep’s source code tarball can be downloaded from here:

http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/ncurses_programs.tar.gz

15.1 The Game of Life
Game of life is a wonder of math. In Paul Callahan's words

The Game of Life (or simply Life) is not a game in the conventional
sense. There are no players, and no winning or losing. Once the
"pieces" are placed in the starting position, the rules determine
everything that happens later. Nevertheless, Life is full of surprises! In
most cases, it is impossible to look at a starting position (or pattern)
and see what will happen in the future. The only way to find out is to
follow the rules of the game.

This program starts with a simple inverted U pattern and shows how
wonderful life works. There is a lot of room for improvement in the program.
You can let the user enter pattern of his choice or even take input from a file.
You can also change rules and play with a lot of variations. Search on Google
for interesting information on game of life.

File Path: JustForFun/life.c

15.2 Magic Square
Magic Square, another wonder of math, is very simple to understand but very
difficult to make. In a magic square sum of the numbers in each row, each
column is equal. Even a diagonal sum can be equal. There are many variations
which have special properties.

This program creates a simple magic square of odd order.

File Path: JustForFun/magic.c

15.3 Towers of Hanoi
The famous towers of hanoi solver. The aim of the game is to move the disks
on the first peg to the last peg, using the middle peg as a temporary stay. The
catch is not to place a larger disk over a smaller disk at any time.

79

http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/ncurses_programs.tar.gz
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.math.com/students/wonders/life/life.html

NCURSES Programming HOWTO

File Path: JustForFun/hanoi.c

15.4 Queens Puzzle
The objective of the famous N−Queen puzzle is to put N queens on an N x N
chess board without attacking each other. This program solves it with a
simple backtracking technique.

File Path: JustForFun/queens.c

15.5 Shuffle
A fun game, if you have time to kill.

File Path: JustForFun/shuffle.c

15.6 Typing Tutor
A simple typing tutor, I created more out of need than for ease of use. If you
know how to put your fingers correctly on the keyboard, but lack practice, this
can be helpful.

File Path: JustForFun/tt.c

80

16References

16.1 Online
 NCURSES FAQ pages

http://invisible−island.net/ncurses/ncurses.faq.html

 Writing programs with NCURSES by Eric Raymond and Zeyd M.
Ben−Halim at
http://invisible−island.net/ncurses/ncurses−intro.html
This is now somewhat obsolete. Pradeep was inspired by this document
and the structure of this HOWTO follows from the original document

 Pradeep’s original ncurses How-To document:
https://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/

 Python curses module documentation:
https://docs.python.org/3/library/curses.html#module-curses

 Python Panel documentation:
https://docs.python.org/3/library/curses.panel.html

Also don’t forget the man pages on your OS. The curses functions are all
covered under section (3) – subroutines. The pages treat related groups of
functions together. They only cover the native C ncurses functions, not the
Python module.

16.2 Books
There are also a few dead-tree books on the ncurses C library that might
prove useful. (I don’t know of any published Python curses books.) I can
personally recommend the following:

• Dan Gookins Guide to Ncurses Programming by Dan Gookin. Self
published on Kindle. A low cost tutorial that covers slightly more than
this How-To and in a bit more depth.

• Programming with Curses by John Strang. Published by O’Reilly Now
discontinued but you may be able to pick up a used copy. It focuses on
the original BSD library rather than ncurses so there is no discussion of
text attributes, color or mouse interaction but for the basics of text
manipulation it is pretty comprehensive. If you want to understand how
curses works under the covers this is your best bet short of reading the
C source code.

81

http://invisible-island.net/ncurses/ncurses-intro.html
http://invisible-island.net/ncurses/ncurses-intro.html
http://invisible-island.net/ncurses/ncurses-intro.html
http://invisible-island.net/ncurses/ncurses.faq.html
https://docs.python.org/3/library/curses.html#module-curses
http://invisible-island.net/ncurses/ncurses-intro.html
https://docs.python.org/3/library/curses.panel.html
https://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/

	Revision History
	Introduction
	The Translation to Python
	Purpose/Scope of the document
	About the Original Document and Programs
	Copyright

	Programming in a Terminal
	What is NCURSES?
	What We Can Do with curses?
	Where to get it

	1 Hello World !!!
	1.1 Using the curses module
	1.2 Dissection
	1.3 About initscr()
	1.4 The mysterious refresh()
	1.5 Reading character input
	1.6 About endwin()

	2 Initialization
	2.1 raw() and cbreak()
	2.2 echo() and noecho()
	2.3 keypad()
	2.4 halfdelay()
	2.5 Miscellaneous Initialization Functions
	2.6 An Example
	2.7 A Word about Windows
	2.8 The curses.wrapper() Function

	3 Output Functions
	3.1 addch() Method
	3.2 addstr() Method
	3.3 insch() Method
	3.4 inssttr() Method
	3.5 A Word of Caution

	4 Input functions
	4.1 getch() category of methods
	4.2 getstr() category of methods
	4.3 An Example
	4.4 Reading from the Screen

	5 Attributes
	5.1 The Details
	5.2 attron() vs attrset()
	5.3 attr_get()
	5.4 chgat() functions

	6 Windows
	6.1 The Basics
	6.2 Let there be a Window!!!
	6.3 Explanation
	6.4 Some Other Stuff in the Example
	6.5 Other Border Functions
	6.6 Sub-Windows

	7 Colors
	7.1 The Basics
	7.2 Changing Color Definitions
	7.3 Color Content

	8 Interfacing with the Keyboard
	8.1 The Basics
	8.2 Simple Key Usage

	9 Interfacing with the Mouse
	9.1 The Basics
	9.2 Getting Events
	9.3 Putting it all Together
	9.4 Miscellaneous Functions

	10 Screen Manipulation
	10.1 getyx() functions
	10.2 Screen Dumping
	10.3 Window Dumping

	11 Miscellaneous features
	11.1 curs_set()
	11.2 Temporarily Leaving Curses Mode
	11.3 ACS_ Variables
	11.4 And finally...

	12 curses.panel module
	12.1 The Basics
	12.2 Panel Window Browsing
	12.3 Using User Pointers
	12.4 Moving and Resizing Panels
	12.5 Hiding and Showing Panels
	12.6 panel_above() & panel_below() Methods

	13 Tools and Widget Libraries
	13.1 curses.textpad
	13.2 dialog

	14 A Case Study – The Totalizer
	14.1 Totalizer Design Summary
	14.2 The Cell Class
	14.3 The Grid Class
	14.4 The SummingGrid Class
	14.5 The Totalizer Class
	14.6 The Driver Code
	14.7 Things to Consider

	15 Just For Fun !!!
	15.1 The Game of Life
	15.2 Magic Square
	15.3 Towers of Hanoi
	15.4 Queens Puzzle
	15.5 Shuffle
	15.6 Typing Tutor

	16 References
	16.1 Online
	16.2 Books

