My experience teaching Python
I recently designed and taught a short introductory course in computer programming for a community college in eastern Iowa, US. This course is intended to give students an introduction to the college's accelerated programming sequence of courses. The students in these classes are typically nontraditional, many looking for a career, and often have full time jobs outside of class. We chose Python as the language for this first course for reasons that should be familiar to readers of this list. We gave each student a copy of the Lutz and Ascher Learning Python book. The result was mixed, but still a success considering that this was the very first time we had taught the class this way. About half the class would have been at sea the whole course if we had used C or C++; using Python, at the end everyone could write at least a simple program and see it work in IDLE or the interpreter. We will make these changes in the next offering of this class: - some how-to handouts on using IDLE - a book in addition to Learning Python; along the lines of "Thinking Like a Computer Scientist" or "Simple Program Design." -=- Mike Miller Return-Path: <ajs@ix.netcom.com> Delivered-To: edu-sig@python.org Received: from smtp7.atl.mindspring.net (smtp7.atl.mindspring.net [207.69.128.51]) by dinsdale.python.org (Postfix) with ESMTP id 4A4001CFB1 for <edu-sig@python.org>; Mon, 21 Feb 2000 11:02:22 -0500 (EST) Received: from oemcomputer (nyc-ny68-45.ix.netcom.com [209.109.225.237]) by smtp7.atl.mindspring.net (8.9.3/8.8.5) with SMTP id WAA04866; Sat, 19 Feb 2000 22:42:38 -0500 (EST) Message-ID: <001f01bf7b54$84b53280$ede16dd1@oemcomputer> From: "Arthur Siegel" <ajs@ix.netcom.com> To: "Kirby Urner" <pdx4d@teleport.com> Cc: <edu-sig@python.org> References: <3.0.3.32.20000217004003.0078a9c0@pop.teleport.com><3.0.3.32.20000218095126.03d5fe14@pop.teleport.com> <3.0.3.32.20000218132024.0396f7f4@pop.teleport.com> Subject: Re: [Edu-sig] "dynamic geometry" application Date: Sat, 19 Feb 2000 22:42:30 -0500 MIME-Version: 1.0 Content-Type: multipart/mixed; boundary="----=_NextPart_000_001C_01BF7B2A.9AA1C880" X-Priority: 3 X-MSMail-Priority: Normal X-Mailer: Microsoft Outlook Express 5.00.2615.200 X-MimeOLE: Produced By Microsoft MimeOLE V5.00.2615.200 Sender: edu-sig-admin@python.org Errors-To: edu-sig-admin@python.org X-BeenThere: edu-sig@python.org X-Mailman-Version: 1.2 (beta 1) Precedence: bulk List-Id: Python in education <edu-sig.python.org> This is a multi-part message in MIME format. ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: 7bit ----- Original Message ----- From: Kirby Urner <pdx4d@teleport.com> To: Arthur Siegel <ajs@ix.netcom.com> Cc: <edu-sig@python.org> Sent: Friday, February 18, 2000 4:20 PM Subject: Re: [Edu-sig] "dynamic geometry" application
At this point in time, I'd be most interested in seeing screen shots though, since I don't feel ready to digest complicated source code. I'd like to develop an under- standing the gist of your technique (without trying to comprehend an entire application). If you want to share any "cave painting" snippets that give me a feel for your strategy, I bet others besides me would be interested.
I have attached a few output pictures from PyGeo and the full Python scripts that created them. The scripts run from an IDE for the app which is a scaled down and customized verisonof IDLE. I am by the way quite interested in what you are doing with scripting to PovRay, though I haven't had a chance yet to explore it in any depth. It was PovRay that ignited my initerst in 3d graphics originally, and I had hoped to get around to building an interface between PovRay and my PyGeo app. Looks like you may have done a lot of it for me already. I member of the Edu-sig group has offered me space to make the app available for download. Hopefully, it will be up in a few days. ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: text/plain; name="quadric.py" Content-Transfer-Encoding: 7bit Content-Disposition: attachment; filename="quadric.py" p1=FreePosition(-30.0, -22.0, 3.0,name='p1',color=BLACK) p2=FreePosition(-20,0.0,27.0,name='p2',color=BLACK) p3=FreePosition(24.0,22.0,-2.0,name='p3',color=BLACK) p4=FreePosition(4.,20.,11.,name='p4',color=BLACK) p5=FreePosition(0.,27.0,10.,name='p5',color=BLACK) p6=FreePosition(9.,-17.0,-6.,name='p5',color=BLACK) p7=FreePosition(10.,1.0,-9.,name='p5',color=BLACK) p8=FreePosition(16.,17.0,10.,name='p5',color=BLACK) p1p2=Line(p1,p2,show=0) p3p4=Line(p3,p4,show=0) p5p6=Line(p5,p6,show=0) p7p8=Line(p7,p8,show=0) pp1p2=PointPencil(p1p2,density=40) pp3p4=PointPencil(p3p4,density=40) pp5p6=PointPencil(p5p6,density=40) pp7p8=PointPencil(p7p8,density=40) QuadricArray(p1p2,p3p4,pp5p6,color=(.9,.9,.9)) Transversal(p1p2,p3p4,p5,color=GREEN) Transversal(p1p2,p3p4,p6,color=GREEN) QuadricArray(p3p4,p1p2,pp7p8,color=BLUE) QuadricArray(p5p6,p3p4,pp7p8,color=RED) slate(axes=0,scale=30,width=640,height=480,fontsize=10) ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: text/plain; name="design.py" Content-Transfer-Encoding: quoted-printable Content-Disposition: attachment; filename="design.py" A=3DFreePosition(-24.0,-12.,1.0,name=3D'A',color=3DRED) C=3DFreePosition(31,-7.0,-12.0,name=3D'C',color=3DRED) AC=3DLine(A,C,name=3D'AC',color=3DRED) B=3DLineSlider(AC,(-7.,-14.0,-6.0),name=3D'B',color=3DORANGE) Cp=3DFreePosition(11.0,7.0,7.0,name=3D"C'",color=3DRED) Ap=3DFreePosition(-16.5,-3.5,16.,name=3D"A'",color=3DRED) ApCp=3DLine(Ap,Cp,name=3D"A'C'",color=3DRED) Bp=3DLineSlider(ApCp,(30.0,13.0,2.0),name=3D"B'",color=3DORANGE) pmap=3DPointMap(AC,ApCp,B,Bp,density=3D60,color=3DORANGE,name=3D'pmap') p1=3DFreePosition(-30.0,-25.,-17,name=3D'p1',color=3DGREEN) p2=3DFreePosition(31,-17.0,9.0,name=3D'p2',color=3DGREEN) p3=3DFreePosition(17,-11.0,-14.0,name=3D'p3',color=3DGREEN) ccirc=3DCircumCircle(p1,p2,p3,style=3DFILL,precision=3D100) tri=3DTriangle(A,C,Ap) tri1=3DTriangle(A,Cp,Ap,color=3DRED) plane=3DPlane(p1,p2,p3,name=3D'plane',color=3DGREEN,scale=3D10,alpha=3D.3= ) FreePosition(-35,30.0,-15.0,name=3D'O',color=3DCYAN) bz1=3DBezierCurve((p1,p2,p3,A,C),color=3DWHITE) bz2=3DBezierCurve((A,C,p3,p1,p2),color=3DGREEN) bz3=3DBezierCurve((p3,C,p3,A,p1),color=3DBLUE) proj1=3DProjection((pmap,AC,ApCp,bz1,ccirc),plane,O,name=3D'proj1',color=3D= YELLOW) lw1=3DFreePosition(-35.0,-35.,0.0,name=3D'lw1',color=3DGREEN) lw2=3DFreePosition(-35.0,0.0,35.0,name=3D'lw2',color=3DGREEN) lw3=3DFreePosition(18.0,26.0,0.0,name=3D'lw3',color=3DGREEN) lw=3DPlane(lw1,lw2,lw3,name=3D'lw',color=3D(0.48627,0.71765,1.0),scale=3D= 20) orig=3DFreePosition() proj2=3DProjection((proj1,),lw,orig,color=3DWHITE) proj3=3DProjection((proj2,),plane,O,color=3DGREEN) Sphere(O,A,style=3DLINES,color=3D(1.0,0.2549,0.15294)) slate(axes=3D'no',scale=3D50,width=3D800,height=3D600,bgcolor=3D[.9,.9,1.= ]) ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: image/jpeg; name="pascal3d.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="pascal3d.jpg" /9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYHBgUI BwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy /9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy MjIyMjIyMjIyMjIy/8AAEQgB4AJYAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgME BQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEV UtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3 eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh 4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALUR AAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDTh JfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJ ipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz 9PX29/j5+v/aAAwDAQACEQMRAD8A9PooorrJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACsjxFr0Xh/T452ge4ubiZLW0t0IUzTP91Nx4UcHLHoAepwDr1zfjPRbz V9PsJrBUkutMv4dQjt3baLgx5/d7v4SQeCQRnGfUJ7AT6Z4gluNeudC1KzSz1KKEXUaxTGaOaEnb vVtqkENlSrAdiMjpu1yumaZqF745ufEt5Zvp8KWA0+C2ldHkkG/zGkbYxVRn5QMknBJxwD1VCAKK KKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRJcRSPsVsn+dSMAVIPQjmvCovHmo6P4wv7sF7 yzaZkWFpG2hA+AU9DjPbvXp5dls8cp+z3ivvOHFVMTCpD2SXL9q++62+V31PdqKo6Rq9lrmmxX9h KJIJB+KnupHYir1edOEoScZKzR3bhRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBi+LdRXS /DF9ctEZvk2eWCQWB4bpzwu48dACa8sl8Nwr4d8HSXMQVb5pLeeU9jMSYm6/w53fhXQ/FrUCYbHS YZtsz7ptgXJckiNR7Ah5P++a2PHmkKnw7eC3DFtNWKSEjqNmBn/vnNfS5fJ4WjR1s6sn91uVf+lX /wCGMZ+835HF+HptV8MS3l3bRvLLYSeVrGn5yXTtOn4dfpno3Hrumanaaxp0N9YzCWCUZVh29QR2 I9K4nxBM2nz6R4+sIj5UkMaahEv8cDgEN7kZH5L2FF3BJ4NvB4i0JDceHrwCS9s4uRGDz5sY7DHb +mNs42Eccoztab282t4Pz6xfVNJhF8unQ9BoqvY31rqVlDeWcyzW8y7kkXoR/Q+3arFfOyi4uz0a NgooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFVNUvk0vSbu/kAK28LykE4zgZx+PSnGLlJRW7A8qvpX 8Q/F6CIKjQQ3qxozYJX7OpZ19QCzH2PHpXrF/aJqGnXVlIcJcRPExHYMCD/OvJ/hjp7yeLHuriNj LDYiWR2PWSZtyt+MZr2CvbzuSpVqdGm/gil8+/3WM6eqbfU4z4fPHqvgCOwvE8wQmWzuEbuMn5f+ +WAqLwZPLo+oXvg3UW3m2zLZO4/11ux6e+M/zH8NP8Jn+z/GninR2f5WnW9iXtiQZb8sqPwqbx3p dwbW28QaYManpLGZcf8ALSL+ND6jGePTI706jjLE1KEtI1bSXk2rp/jZ+XoJfCn2M28trr4eajJq WnxvP4cuHzd2i8m2Y/xp7f8A6j2I7qzvLfULOK7tJlmt5V3I6ngiq+l6ja6/okF9CA9tdR5KMM+z Kfocg/SuLnguvhxqLXlokk/hi5kzPAPmazY/xL/s/wD6jzgnBxeM/dz0rR0/xW6P+8unfbcr4dVs eh0VFa3UF7axXNtKssEqhkdDkMDUteS007MsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4f4p6glt4XjsTKI zf3CRsxBO2NTuZuPTA/Ou4ryP4i6tI/jGGKBBKum2xJSSNGQu4LOGDcYMSn3z0r1clo+1xkX/Lr9 2342IqO0Tf8AhlArQ61qKsrCe98lCqlVMcYwuAScDDYxk4x1Nd7XNeALE2HgbSo2ADSRecSO+8lh n8CK6WsMyqe0xdRra9vktF+Q4K0UcVqhOmfFTRrzKpFqVpJaOfVl+YfiSUFdrXF/ElGt9H0/WY4w 0mmX8U5P+znBH4nbXZqwZQykFSMgjoaeK9/D0avk4v8A7df+TQR0bRwmi58HeM5tBf5dK1Qm4sGP 3Y5P4o8/l/473Nd1JHHNE8UqK8bqVZGGQwPUEdxWD4x0Btf0No7c7NQt2E9nIDgrIvIGe2en5HtU nhLX18ReH4bxhsuUzFcx4xslXrx78H8arE/7RSWKXxLSXr0fzX4rzFHR8pzTpcfDjUDLH5k/hW6k +dOWaxc9x3KH/PON3fRSxzwpNC6yRSKGR1OQwPIIPpSTwRXVvJBPGskMilXRxkMD1BrgY5bn4cag tvOZJ/C1zJ+6kOWaycnofVT/APX653V/v8f+nq/8nX/yX/pXrufD6HoVFNjkSaJJYnV43AZWU5DA 9CD3FOrzCwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKAEJCgkkADkk185anftrep306+fvv7gyQhZcqSX2Rqy46hPMA/ 3vTr7X471P8AsrwZqUykeZLH5EY7kv8ALx7gEn8K8n8I2P2nxZpVsroE+2+Y6pnafs6fK/8AwIlv xzX1fD8FRoVcVJen/bqu/wBPuMKurUT3a2t47S1htohiOFFjQegAwKloor5Rtt3ZuZPijTv7V8L6 nZBdzyW7bFz1cDK/+PAVX8FX39o+DNJuM5P2dYyfUp8h/Va3q4n4d4shruh/N/xL9QfZn/nm33f/ AEEn8a76fv4Kcf5Wn8no/wAeUl6SR21cHf8A/FG+OY9THyaRrTCK6/uxT/wuewB5/wDHj6V3lZ2u 6Nb6/otzptzwky4D4yUbsw+hrPB140p2qfBLR+nf1T1XoEldaGjUN3aQX1pLa3USywSqVdGGQwrm vAusT3mmzaTqRxqulv8AZ5wTkuo+6/vkDGe+M966us69GeHquDeq6/k167oad1c89tri6+HOopY3 ryT+Gbl8W9w3JtGP8Le3/wCsdxXoCOsiK6MGRhlWU5BHqKivbK21Gyls7yFZreVdrxsOCP8APeuG srq6+H2ox6XqUrz+Hbh9tnevybZj/wAs3PYe/wCPqB2ySx8eZfxVuv5vNf3u667rUn4fQ9AopAQQ CDkHoRS15ZYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAebfFLU9t1penq6gQ79QkDLkZQHywfYtuH4iqPw109h4k3MqMthpc abgOjzHzefcBmX8KzPE0j6/4s1GNJGH2m9g0eEMMjYrbpCPo6qf+BV2fw3SO5h1vV40Kre6g/ljs I1+6B9NxH4V9dW/2XKvZ9Wl98nf8nJfIwXvTudvRRRXyJuFcVAf7M+Lt1EXIj1awWUL2MifLj/vl WP412tcV44J0/XPC+thlRYL37NKxH8Eowc+wAb8678u96pKl/PFr52uvxSJntc7WiiiuAo4bxfC/ h3XbPxhaIxjQi31JFH34jgBseo479l9DXbQzR3EEc8Lh4pFDo6nhgRkEU26tYb20mtbmMSQTIUkQ 9GUjBFcd4JuptHv7zwffuWlsyZbKRuPNgJ4/EZ/Uj+GvRf8AtOGv9un+Mf8A7V/g/Ij4Zep21VtQ sLXVLCaxvYllt5l2uh7/AOB75qzRXnxk4tSi7NFnBaXqV14H1GLQdamMukSnbp+oP/yz/wCmch7Y 7Ht9Pu97VPVdKs9a06WwvoRLBKMEdwexB7EVx2j6reeDdTi8O6/MZLCQ7dO1BumO0bntjp7fTGPS nFY2LqQVqi3X83mvPuvmupHw6PY72iiivMLCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKpavqC6Vo95qD4It4XkwTjJAyB+J4q7XF/EiZ5 9HstEgcCfVryO357ICCT+B2/nXTg6KrYiFN7N6+nX8BSdlc4DTA9kbWZ5AJLDS7jVZC3P7+YbU/H BhNepeBbI6f4I0mE9WgEp/4GS/8A7NXm1/m80vX57REZdU1WDSrQKOkcf3cexCoPwr2eGJIIY4Yl CxxqFVR2AGAK9zO6zdKMXu3+Sv8AnOS+RlSWo+iiivmjYK5j4hWB1DwPqSqoMkKCdD/d2EMT/wB8 hvzrp6iubeO7tZraYZimRo3HqCMGtsNWdGtCqvstP7hNXVito19/aeiWN9kZuLdJDjoCVBI/Or1c d8NJpD4T+wzKVm0+5ltXB65Dbv8A2bH4V2NXjKSo4idNbJu3p0/AIu6TCuQ8d6bcC3tvEemKP7S0 lvNAH/LWL+NDjkjGfw3etdfRUYau6FVVFrbp3XVfNA1dWKWk6nb6zpNtqNqcw3CBxnqD3B9wcj8K u1wehk+D/GM/h6T5dL1JmuNPY9Ef+KPP8vw7tXeVpjKCpVPc1jLWL8n+q2fmgi7oKoaxo9lrumS2 F/F5kMg/4Eh7Mp7EVfornhOUJKUXZoe5wuh6ve+FtUi8NeIZTJA/Gnag3Cyr2Rj2YcD/AOsQT3VZ +taLY6/pkun6hFvhfkEcMjdmU9iP/rHIJFc14e1q90TU08L+I5d0x40++b7t0nZSez9vfp1wW9Cp GOMi6tNWmviXf+8v1XzWl7Qvd0ex2tFFFeaWFFFFABRRRQAUUUUAFFFFABRRRQAUVV1C/h061M82 SM4AXqT6VFpeqw6pE7RKyMhAZW7Z6U+V2uVyu1+hfooopEhRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABXnHiXUd3jm6ut+IvD2lyTLuXK/aJBhR+IZPyr0ZmVFLMQqgZJJwAK8YkaXU/DdzOpKXHi nWliQNz+4VuPybivZyakpTlOW2kf/At//JVIzqMvaRp6rd+A9HbIZUk1SbA6lvnQn34xXrVcRoqC 8+KGszx7fs+m2UVlGB/Duw2B9CGFdhdXtrZKrXVzFCHbavmOF3H0Gep9qyzas6lSF+1/nJuX6odN WRPRWDL4rsw223try4+fYzLF5YU8c/vCpI56qD7ZPFQyeJLhkHl20UbZ53MXGP0ryrlnSUVyk2vX 0q4RkiPqi5P65qi9/q7dNZuk/wB2KH+sdFxj/DeNN+InibTMNtuRHfR56c/fP/fT/pXbV5Re315Y eMNF1CS+llmliktJJpEQZX7yAhQB95vTsK6aTWNSeMqt40ZP8SxpkfmpFd+PfN7Ot/NFfevdf5EQ 6o7GiuPTW9TjiYC4SSTadrTRAgHsSF25/MVLbeIdRQj7WLWUd/KiaP8AmzVwXLLXjHQH17RCtqSm o2rC4s5VOGWReQAe2en1we1TeE9eXxH4fgvSNlwMxXEeMbJV+8P5H6EVHa+Ji6/6XZ+U3pFL5g/U LXLDUrfw345GoQlo9K1pvLuUcY8mfs/pg89+7Z6CvRw7+s0Xh38Su4/rH5rVea8yHo7npFFQWt7a 30Xm2lzDcR/34pA4/MVPXnlBWV4g8P2XiTS3sb1f9qOVfvRN2Yf55rVoq6dSdOanB2aBq+jOL8Oe Ib3TtTHhjxK+L5R/ol4fu3aduf738+/PXtKx/Efhyz8S6YbS6BSRTuhnX78T+o/qO9YvhrxFe2uo /wDCM+JCE1SMf6PcH7t2nYg/3v5/UGu+rThioOvRVpL4o/8Aty8u66em0J8ujOyooorzSwooooAK KKKACiiigAooooAq6hYQ6jamCbIGcgr1B9ai0vSodLidYmZ2cgszd8dKv0U+Z2sVzO1ugUUUUiQo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigDmvH2pf2X4L1GRSPNmT7PGO5L/ACnHvgk/hXKCKHTP FnhzS5V3Q6Hp3nSpEhcmaT5e3+0VbJ4Gc5FaPjy6Nz4k8P6So3rFIb+ZCuVIXhM+xO4H615hearP eeIdV1CG4aS+SRpPNZtiiGMbQxIHJJKAAD1zgV7tDmo4WMYrWV3/AOBPkX4cz+Zk9Zf16ndeFL67 eLVNSjbyV1O9kmBVfmKZIAyewJOMYPHWtYnc7OeXc5Zj1Y+priPD3iCfTrHT7O60t4bNmeNrsSbl RgM84HUsTwcHnv1PbKyuoZHV1PRlIIP0I615WPqxq4qpKO17L0Wi/A0grRQtFFFchQUUUUAYfixW TRlvUI32U8dwqkZ3ENjH/j2fwrcBVgGRw6HlWXoR6iq99am+0+4tBtDTxNGC2MAkYB5ql4auDdeG 7CQgAiLyyAc/dJXn8s/jXoS/eYGL6wk18pK6/FMjaRq0UUV55YVV1Cwh1Owms5+I5VxuAyVPYjp0 PNWqKunUlTmpwdmtUDV9DD0G4N/Ds1CFW1PTn8p5HXLAnowJ5+YDr3xXR2l9e2XlLFeTtGmcpM/m 7/qzZb8iOtcvrinSdQt9dhQ7B+5vQMfNGSMN9Qf6DpXQKysoZWVlIyGU5BHqD3rsx1OLaxFNWjP8 JdV+q8miYvo+huWniSYHbeW6MAuTJASCW9Nh6D33VsW+p2VzII4rhDI2cRk4Y4xnAPJxkdK4ykZV dSrAMpGCCMgiuG5R39Y3iTw3aeJdOFvOWinjO+3uU+/C/qPbgZHf2IBGFaajf2Tnyrp3jP8Ayyn+ dRzkkH7w44AzgcYHrsWPii3mcRX0D2cuM7yd8JwMnDjoB/tBc84zWlKtOlNTg7NCavoyh4X8RXZv pPDniALHrNuuUk/hu4x/GvqcdR9fQgdbWF4m8NW/iOxTEht76A+ZaXcZw0T9RyO3SqPhfxPPd3Mm ha6gttdth8w6LcqP40/DkgfUdwO6tShiIPEUVZr4o9vNf3fy9CE7OzOrooorzywooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr315Dp1hcXtwxWG3jaRyBk4Ayce9WK5 P4h3v2Pw2inGyW4UOC2NyorSlfx8vH404xc5KMd2BwianezXfiHxFe7lkijNtGD91CvzNF74bYM9 +veual0K6tNJ026hWOU6lAllJHlQ4Ly+crAsQOihTyMcc81pXkEkPgnTtPUr9p1SdN57tvbdk/8A joNbl8kMvifRbFYmKWsck7KDwBjah/BhX0UmlXXK9INtPypRsvvdzLp/XUglF5aNPqkmniC1nkP2 uyDq+UHAkIHyg9SQCcZ68mrCWE1mou9BuBJbv832V2JRvdSeh6cH9OlbxAIIIBB6g1gqf+Ecvdpy dLuG+U5/4939P90/56c/LtdTYv2GsW1/I0O17e6U/NbS/fHf0Gf/AK3StCqV/pdpqaL5yfOvKSoc Ov0P+RWeLy/0UBNQU3dmOl3GPnX03j09/fr2p3tuBu0UyCaO5t0uIHDwv91x0NOWSB5REku5ydoI AK7s4xuz+vr7c1Si5bDUW9hawfDo+zXms2GzaIbvzVA6BJBlQPwFb1YR2WfjVT5bBb+0Khs8NKhz /wCgV34L36Val3jf5xd/yuZy3TN2iiivPLCiiigBskUc0TxSoHjdSroejA8EcVheHpZbKa40O6ct Ja/Nbs2cyQnofw6fp2rfrD8R2swih1WzUfa7AmTGB+8j/iUn6f1x1r0MDJVE8LN6T28pdH89n5Py Ilp7yNyiobS6hvrSK6t23RSqGUnrj39/Wpq4ZRcJOMlZosKKKKkCzZX09gx8h8IesZ5XqT07HJPI 603XbfT/ABVHCpl/szWoX/0C4ZgMuOQoYdQfTrwSAQOYKa6LIjI6hkYYZWGQR6GtaNadGaqU3ZoT SaszW8K+KJdQml0bWYha65a8SxngTD++v8+PqOK6qvKtX024uo4JIJ5ftdqymzuN2ZYfYuTl0zzg 8jJIJ+4eq8GeMY/EVu9pdhYNWtsrPD03YOCy+2eo7Gu2tSp14PEUFa3xR7ea/uv8Nn0JTadmdXRR RXAUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeffFhraXSNMsZm2vPeh lbn5FCkM/HXAbH4mvQa8X+J97LqHjG3sI7WS5W3MNrGgl2AXEp3qc4PUKBj26124C8ajrL7Ccvmt vxsTLa3ciu76z1DxZpjpND9hs43k352rvPAH4YU1dsbm3ufF2o3Ml7biOGCKCBnlVVKt87YLEdD/ ADrkdF1Ry2pzxaENVMJjQKHMjbSSFx8vPAOTt7DpXVeGLG0vtKmvJrO2eO4u5ZI1MYYRjgbRnpjA 49MVpSqy+r1ZPolD5uV3+TBrVG4NSsT0vbb/AL+r/jSSy2F5A8EksEsbjDLvByKifQtKfrp9v+CA fyqL/hG9IzkWSA/7LMP5GvK1LGaR9stbk6ZKslxAi5t7gLuG3+6xHce/+FbLIyMVdSrDsRg1izeF 9LkidY4Wicj5XEjHafXBODWZpuj6dLJJY30LRX8R/hlcCVezLzj8P/r4Wq0A1J9GeCc3Wkyrazn7 0RH7p/qO31H8+apWBt31VUvI5LO9BDiJm+R29Vb6jgfQc1Z/4RWwH3JbtP8AdmNc9qd2tnc/Z9Mv byR+hYy5GfbH+f651Kyoq7O3A4Oti5uNPRLd9F/XQ79kdCA6spPPIxXP+JCttLpWpF3T7Pdqjsoz iJxhz+gH41nm11+3tI5Lu8v5rc5eSO3nIkQnjJByGxx09/rTbvTf7R8P3c9vrV3cwrEWaJzn5gNw U++R+ld+V1uXE03NWTdn6PR/gzgqQlFOMrXXbY7CiufsbfUr+xgvY9aI89BIVEIYKTyV69jx+FXB aa2qlRrUeCMc2KH9c1hUhKnNwktU7FJ3VzUorFay18fd1eBv963ApFg8Rr1u7J/qhH8hUX8gNulB IIIOCOhFZKN4hTqmlP8A7zSD+VNll8RbyVttMx/dR5MfrRcCrpg/sPWpdKfIs7smayY5wp/jj6fQ /wD1zXQ1yup2mu6pCkcllbxyxOJIZopRuRx06noe/wCfarWn6/f6jbi4g0nzUztfbOqbXA+ZcEkj B9e2K9LFP6xSWKW+0vXo/wDt5fin3Ijo+U6CisqTVNSCjb4flB75u42z+QqA63qC/e0G6/4C4Neb dFm5RWMuuy/8tNI1Bf8AdiLVM2txpD5jaZrAz0JsztP45ougLkd/aS3CwI4LM+wNvxznH3cZx/n2 qnqOlefJHfWDraarA3mQ3SKAScY2v/eUgY5zj6ZBym1rR0uvPexvEkzn5oiOfXGaup4q0x/4pV/3 ozW9LEujNVKWjX4+vk+pU1GSskdt4U8VR+IIJLe5jFrq1txc2pPT/bX1U/pn6E9HXjGqalpss0Wp afqi2erWvzQyFHG8f3G45B5HPr9a9E8I+LbbxPY8hYdQiUefb5zjP8S+qn9OldNeFGpH21B6dY9Y v9Y9n02fnkrrRnR0UUVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANd1jRndg qKCWYnAA9a8TvtPu9T8GzeKFsUufO10ahNFKy7TbRhxghiARliuOc56V6P8AEDUjpvgu/ZD++uFF tGP7xfgge+3cfwrE8XWTaX8P9K8NW+zz7yWCywD1bO5mH1Yf+PV7GBoKVFQentJJf9ux1l+a+4zk 9fQ4LQ7LUPDPh/Up7+OS1t9QthPYAupDHbyQFJCkl044OB04rcstEnstOtLnTZDDdCBDLDISUlOO QfQ9f8811PxFt4n0HSNEgWJWur6G3hVlzsUAjI+mQPoa4I3WpTpcT/2itzHa7lnlsL5SowSd5JyC CORjt1wQRXJiqlsMkl8cpS+7Rfdd+RUVr6HUadq0d47W0qG3vYxmSCTg/wDAf73rx79hmtGuOR9J 1PyRc6zqYfavlC7cdCM5U4I2++RTZLOC3mD6sZJ7Z8LHeW8mEOOPmUdD05Hp3JNeZzFnalHWMOVY IejEcGsXWYba5jWaK8hgvYPmhkLgc/3T7Gkj8N6M6B0g3qejCdyD+TVzmuNpdvMLbT7VDKp+aXJb B9Bkms61ZU43Z24HA1MZU5IbdX2X9bI29RvL2/0BLi0NtFuws6G4UFT3wTxjpxnPzDryTm6ImlaY RdX95Cbo/dUHcE/EdTS2ugXtpp323y1kuCcyWzDPmR8HawPBORkD+uMdDp8el3tpHc2trbbHHRY1 yp7g+hrGjRlKXtKu/wCRrUxdWhTlg6ck4XeqVm156u/a/VeRGviXRSCTqMYI6Ao/P5LWNqF/pE03 2qxllivAciSGHIf2dT94V1a+XGdi7V9hxT67LM8xSTvZnI+GtattP0z7FciTZDO8MMigfOd2eQxG 37w6+/pWo2vSsu6DSL+QHkFo9uagt4Il8U6tYzW8bw3kEdyAeQAvyNx6ljn8KlNjfaOS+mMbi0zu a0kb5gP9hj9Tx/Ou/NLvEOotppS+9Xf43FDaxJFq2pO3/IAnK+huEQ/qKJL/AFtv9Voyp/10uVP8 qt6fqltqKMI2KTIcSQyfK6n6H/PSrtcG/Uoxo5vEbMCbTTkGejuxz+VOkHiGTODpkX+5vP8AMVr0 UWAxFs/EDH59Vt0/3LcH+dZl1bXmi6mrNqGyHU5MTTpCqhJsnB24wAwJHBHIyemK66qmpafDqmnz Wc/CSDAbGSp7EfQ12YKtGlNxqfBJWl6d/VPVEyV1oZ40K8J/ea5en/cIWpm0R5FCyaxqrgDADXAI /lSeH9QnvbOSG8DfbrN/JuCcnJ7NnvuAJz3wa1qxxGHdCq6Ut1/Sfz3GndXMT/hFrAnMkt1If9uY /wBKkHhjSB/y7MfrM/8AjWvRWPKhmWvhzSFOfsMZP+0S38zU66PpijA0+1/78r/hV2iiyArLp9kn 3LO3X6RKP6Vw2raxeQTzeItKsktJdJvmtJJ0n5kUED5k2gFSSo6559Oa9CrhpNC1W5sNY0drJoo9 Q1R5/tbSIUSLcrZ2htxY7MYwOvJFXTqzpS5of16g1c9I8EeOD4vlv4m082jWaxZJkz5hYHdgYGAC uOp6jpXX15X/AGHdw6nJf6E6Q6vGpuoUH3bqPdiWJx3IbDZ/6aqOwI7vw34ktPEmnmeANDcRHZc2 sn34X9D7cHB7+xBA7a1CMqf1ij8PVfyvt6dn9+pCetmbNFFFcZQUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAcT4pP9q+N/Dehgny4nbUJ1xkYTOzP4hh+NGrj+1fijoljtV4tNtpL2TnozfK ufoQh/GjwsP7V8ceJNcIPlxOunwHORhMb8fiFP40eEB/aXi3xRrbKpX7QLKFwcjEYw2PrhDXvv8A cxa/5907f9vT3+5Sf3GW/wA3+RzvxW1SaHXtNtraN5LmG1keBInKyNLMfKQpjksrAMAOePxqppPh 6xTX7nw8hnSC+0yM201zaS2avNEgjmjEbgF/MXEjFeRgdSM10+jWdnrnxI8Q6jcQRzrYNDBb+bGG 8t1HLLnoQynBHPNdtLZ2s11Bcy20Mlxb7vJldAXj3DDbT1GRwcda83MI8rp0v5Yr8fef/pRcOrPP YbK3Fglk9rGI7f8AcGB8P5ZTjac57YIz1BB6EVQl8NWY3tZyT2bOpVvJc7WB6gg9vavQdY0OPUf3 8LCC9Vdqy4yHA6K47jk47jJx1OeTLSwXP2S8hNvdgFvLJyGAONyN/EOR7jIyAeK89osxYLS90qG4 R0W8t3HyxwAxHOMfdBwOgyRycfnk6XLolvqct1Mk1uR8ypMpdYT3GepOeBkcd8nmu0rN1HRoL5vO Q+RdAYEyjqOmGHcVzvDx5/abs0o1q1LnUJu0t1fT7v13+RehuIbld0E0cqjGSjA4z64rGu4m0S+O pQKzWUrf6XEvVf8AbX+o/wAeM8WllHcLBqUB0+6yPKubVtkcmO/oD07fl30zZ61aRlIbyC9iww8q 7TDHP+0OT+PFbXuZl1Y/tBE0Tho3+ZWB7VdrlrC/k0JngvbWe3tJJB5YI3rESOQHB6E/w9ffrnoL W/tL5Qba4jkJz8ob5uOvy9at1HNJPocuGwdLDynKn9p3Zl6uFtfEOi3xR9ru9rIwPXcPkH55NbtY fi2Jm0CSeLPnWsiTxkdip6/kTWzFLHPCk0Tbo5FDISOoPIrvxHv4WjU7Xj9zuv8A0r8DdaSaKd/p NvfMJctBdJ/q7iI7XU/XvVJNRvNKdYtWUPb5wt7Gpx1/jHUf/W71uUjKrqVYAqRggjgivOsWJHIk 0SyxOHRhlWU5Bp1Yr6RNp8xudGdUydz2kh/dSew7r/npVix1mC6l+zTq1reKPmhl4z/unv2/zzRf uBpUUUUwOe1sHSNTg12JT5RxBegDqhI2t06g/wBB610IIIyrKwPRlIIP0I60yaGO4heGZA8UilXU 9weorF8PyyWktzolxIzyWZzbu4IMsB+6e444HXjIAzg16T/2rC8326f4x6f+AvT0a7EfDL1N2iii vNLCiiigAooooAntZvJ1DS5sqBHeeW3qVljZf/Q1iqbxL4dvLbUB4m8N4TVYh+/t/wCG7TupHc8f y7gVRC7rmyUhtrXkAyBxkOGGf++TXf10YbEToT5o/NPZrs/ImSuY/hzxHZ+JdNF1a5SRDtngf78L +h/oe/5itiuL8R+Hr3T9TPifw0uL9R/pdoPu3ad+P738/r13vD3iCy8SaWl7Ztj+GWJvvRN3U/55 rpxOHhye3ofA911i+z/R9fUSfRmtRRRXCUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVn67qS6PoV9 qDFQbeFnXd0LY+UficD8a0K4r4jSNd2OmaBE5WTVb1ImwM/u1ILH8DtNdWCoqtiIQltfX0Wr/AUn ZXHeFk/4Rn4ZLeyKvnfZpL6TcfvswLLn3xtFWPh9ZDS/AtlJNhHmVrqVieu45BP/AAHbVf4juyeF IdJtVUSahcw2cSDjAzngenygfjWh4umj0XwDqIhXbHFafZ4x/dDYjH5ZFehNyxFNd61T8Fovxk/u I2fojP8Ahokkvhu41OYDzNSvZrknvydv81P512dZHhaxGm+FdLtNhRktkLqezEZb9Sa168/HVFVx NSa2u7enT8Coq0UFVr2wttRt/Juo96ghlIYqyMOjKwwVI9QQas0VylHG32kXumgtse8tgf8AXRJm VB/txgfN9UGeg2dTVCKWOaMSROro2cMpyDg4P616DWPqXhy0v5HnieSzumILTQEDeR03qflb0yRk DOCKmwzlLi2hu4WhnjWSNuoYf5wayFS90I/IHvNNGSUyPMi+nqB6fy5Nb13Y6ppWTeW32iAf8vNo pYfVo+WXv03ADqajjljmjEkUiSRt0dGDKfoRwaloCqsllrWnMFZZoJVww7j6+h//AF1hQaZai+Om apEpkKk2t0DsMij+EsP4hxwfoOwOpd6S6zteaZN9lum++P8AlnKOuGH9aqyTwazE2n36mzv0IKZ/ vf3kPce2e/frSfmA+XRL4RvBBq0xtpV8uSOdQ52EYIDduCao6Frc8Oh2gnsZpY4kMbSwDcU28BWX HBwAc5xgj3rW0nUZJmexvVCX0Aw+DxIOzD9P88CtobGDWNbsCUwtyLlcAD/WDJH0GAPSvQw/7zB1 YL7LjL/21/mvuJekky9a63p14cQ3ce/gbWO059Oev4VoEFSQQQRwQe1U7vTLK+/4+baORv7xGG/M c1R/sOe1H/Et1KeADJEUn7yMZ9Af581walGzVW90+11CMJcxbtvKsDhlPsRyKzxfazZAi709LpAA BJavyPUlTyfoKng8QabPIYzMYJATmO4XYwx654H50XXUCs1xqejf8fQe/sgD++UfvY++WH8Xfn+X Ste2uoLyBZreZJY26FT0+o6j8akVldQykFTyCDwaybrRdszXWmTfY7o/e2j93J7Mv5f/AF6NUBr1 h+I7aRIodXtEzeWLb+3zxfxqePTkenPc1Lba1sm+y6pGLO5/hJP7uT/db/H09eK2OVPcEV0YXEOh VVRa913XVfNCkrqxDbXMN5bR3Ns++GVQyE4zg+uCcH1HY1LXP6ZjRdan0l1K2tyTPYnJ2r/fjGfT qOeg7k10FXjKCo1Pc1i9Yvyf6rZ+aFF3QUUUVylBRRTWEzukNtF5tzNuEMZbaGIGTk9gMjJ9x1JA IBqaTamfW7ZCAUs4jdPx/wAtJAUjGfZBIcdt6/j1lU9NsF0608syGWZ2Mk8xGDLIerH09AOwAA4F XKpCCuK8Q6FeaNqb+KPDkebnrfWI+7dJ3IHZ+/v165DdrRXRh8RKhPmWqejXRrs/603E1cztD1uy 8QaVFqFjJuifhlP3o27qw7Ef4Hoa0a4bXNIvfDGqS+JvD0XmRPzqOnrwsy93UdmHJ/8A1kHqtG1i y17TIr+wl8yGTseGQ91YdiP88VricNFRVajrB/en2f6PqvmJPo9y/RRRXGUFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABXErnWPiyzfN5Gi2eM9R5sn+Ksf++a7SSRIYnlkYLGilmY9AB1Ncb8OInudM1DXpk2y6 teSTDnogJCj8Durvwn7ujVreXKvWX/2qZMtWkN1sf2r8TtB0/aGi0+CS+kwehPyrn6Mqn8aX4kEX dlpGjByrajqMUbD/AGB1P4ErSeEh/aXjPxRrRX5VnWxhYHIxGMNj64Q/jTtV3aj8VdEtMK0Wn2ct 2w9C2UH6hTXfD93iYR/59Qv87OX/AKU0iN0/M7SiiivBNQooooAKKKguL21tMfabmKHd08xwufpn rTSbdkBPWVfeHNNvpXn8pre5f709s3lu3puxw/0YEe1THVY2UG3tru5z08qBgD/wJsD9aV5tXf8A 49tKjHvdXQT/ANAD1fsZddPVpfmFznrnQdUtSzR+XqEf+xiGYc+h+Rj9DGPauf1KKyuUW31SJ7WX +AXCmJgx4wjHhj/ukivQGsddmP8AyELG3X0S1aRv++i4H/jtJL4enukaO51y+eNhho1jgVSP+/ZP 60vZQ6zX4/5Bdnkt/De2UkEs0pfyW3Qagi7iv+xIO6k9+ep6/dp1pqAm8UWF15Kxte2jwOued6Nu 3deRgYB6cHuDXpj+AtGEWy3NzaHbtzBIAuP9wgp+O2uB8V+EYfBwsdWbU1ezF9EpjdBG65zuIIO0 5AOQFHQdga2wDUazg9pJx+9afjYU9rm5RVMaigtYpyI5o5LgWyz2l1DPE0pGQilX3FzxhduTT5dQ tLdmW4m+zbe93G1vn2HmBc/5xXHcos1DcWlvdpsuII5V7B1BxT45opVDRyI6noVYHNPoAxj4eigL Np13c2TNjKxuShx6g9fzoMmv2Z+eK31CPJJMZ8p/y6flWzRSsBhTaxpV5F9l1SCW3ZgCY7qIgE5x 8pH8+KZGl7paeZp0o1HTwceVvDOnH8LDr9P071vSRRzRmOVFdD1VhkH8KypfDli0nm23m2cvOGt3 K/p0/Kk0wINQNv4j0otp0wF5buJYNwCyI69Ac9M5x1xnHXFaGj6lHq2mRXScMRtkT+446j8/0xWP c6BqysbuGSO5aIAeeAYpF57kcMSMjLds1QstXGneJbprp1VLuRhcKjiXZNnIbMYIO4E8DqcnAGBX pYeX1ig8PL4o6x/9uj8915p9yHo7na0qqWYKoJYnAAHJNT2+laxe7RBpkkCnOZL11jUe4ClmPbgq v171aPgnUVfzJdShvlKAPayK8ETHPPKMSVxj5W3DiuGMeZ2vYspWsT3czRWcIvJFO1nV8QRkHkNI Acn/AGUyfXbXVaZpUWnK75Et1LjzZyoBbGcKB/CgycKPUnkkkxpJqtnAkbaEjIgCqljcowUewcR8 Up1mOLaLqzv7cn+9au4H1ZAyj8TWqw8+mvo0/wAhXNKiq1tqFneMVtruGVl+8qOCR9R1FWaiUXF2 aAKKKKQBXBazpN54P1OXxHoERksZPm1HT16Ed5EHYjk+30zjvaK6MNiZUJPS8Xo09mv62fQUlcpa TqtnremxX9jKJIJBwe6nuCOxFXa4LVNMu/BGpS6/ocLS6TKd2o6en8A7yRjtjuO30+72enaja6tY Q31lMstvKu5WH8j6EelaYnDRglVou8Ht3T7Pz/NaoUX0e5aooorjKCiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOX+ IWpNp3gy9EZ/fXQFrGMZ3F+CP++d1Xokj8K+DQuEI06yJOOA7KuT+Z/nWH4mzq3jzw5oo3eVbltR nAGR8uQmfxBH/Aqm+JU8n/CKjT4Bun1K5itYwDzktn/2XH417FOipQoYZ/bfM/S9l9yTfzM292Tf Dmwax8FWTSKRNdbrmQn+IueD/wB87ap+GNuofEDxTqe1sQtHZRk9PlGHH5qD+NdbGlvpemqgOy2t YQBn+FFH+Arj/h7cRWfhH+0b64VZdSu5rnB5ZmJ2kAdWPy5wPWkqsqsMRiFvNpL5vm/KIWtZHc0E 4GT0qmr6hef8etuLaPP+tugckeyA5/Mj6Uo8O2k3zai8uov3Fy2Y/wDv2MJ+OM+9eZyRj8bt6av/ AC/E0K7a9YtI0Vo0l9MpwY7NDLtPozD5V/4ERTlXXrzlIbXToyODOTPJ+KqQo/77attEWNAiKFUc AKMAU6j2sI/BH79f+B96YWMdNBaTm+1O+uTwdiyCFB9BGASPYk1dtdMsbLm2tIYm/vKg3H6nrVui plWnJWb07bL7kFkFFFFZDCiiigArzP44RvN4S0uKJd0j6tEqr6kxyYr0yoLqytL0RC7tYbgQyCaL zYw+xx0Zc9GGTgjmqhJxkpLoDOZ8ORR+LvCWiXms2cLNbSRXNsYrh2/eRjAc8Lg53fL8w9z26wgM CCAQeCDXFfDU/ZNL1PRGbLaXqEsC+6E5B/E7q7aujG0lSxE4R2vp6PVfgTF3SMq58M6DeHNzounS t/ee2Qn88VUl8FaDIm1bSaEdQILqWIA/RWAroKK5Sjmf+EF0ofcuNRX/ALfHb/0Imj/hCbQfd1LU lH+/Gf5oa6aigDmf+EIsD9++1Fv+24X/ANBApyeBdFDhpPt8pHID38wH5BgK6SigDFi8I+HYnEg0 WyeQdJJYRI35tk1ynxai2eFdK061228N5qsFs/lW/mFVIc/KoBOcgfdGT074PotYHirw7L4ig0wQ XqWk2n6hFfxu8BlVmjDYUqGXjJ9e1OM5U5KcHZoLXOU8Har4i13QbW2h1SVNU07VI11Rb+IK7WoB yijy85OOrfNkNlhxXpVeba/b6n4R8QWvjC4mguY5GFtqYtLZol8o4CuVLvkgjrkdFGOpPo8ciTRJ JG6vG4DKynIYHoQfSuzF0o+7Xh8M/wAH1X6ryaJi+jHUUUVxFFe4sLS7Obi2hlI6F0BI+h7VTbQ4 lXFpd3dqQCB5cu9R/wABfcP0rUorSNWcVZPQVkYjWuuWxzFNZ3yf3JVaB8d/mG4E+20fWmNrAtuN QsruzAz+8ePzI+O+9MhR/vYreoq/axfxx+7T/gfgFjNtru2vIRNa3EU8R6PE4ZT+IqaobvQdMvJj PJaKlwes8JMUp/4GpDfrVY6fq1l/x63qX0Y/5ZXg2P8AhIgx09VJ96fLTl8Mrev+f+dg1L5AIweR XAX1rdfD/UZNV0yJ5vD1w+69sk627H/lpGOw9R07dMFexXU1jIS+glsn3bR5wGxvo4JXn3IPtVwh JYyCFeNxgg8hga2oVpYdtTV4y3XRr17ro1sS1cisr221GyivLOZZreZdySL0I/z27VPXnt1b3Xw6 1F7+xjkn8NXL5ubZeTasf419v/1Hsa7y0u7e/tIrq1lWaCVdyOpyCKMVhlTSqU3eEtn+j7Nfjugj K+j3JqKKK5CgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKzfEGpjR/D9/qBYBoIWZM9C+PlH4nAqqcHUkoR3egN2Ob8Jj+1fGX iXXSMxpKLC3YNkbUxux9SFP41B4ju7W9+IuiWk00a22mRyXtw5kACN0Td6EMF/76q/4Kg/sbwdpt qkRnv7mP7S0SHk7zkMxP3QAQCT6cZPB5bxp4QudNuYNWsNXmXxPe3P8Aotnaqf3jZ3MFyfuqDlmb AAGeMhT6mJxKo4qU0rxScV3sly3Xyu/UKcISg+Z2Z03jLWrtfB2qXUFmYrIwmLzrjKPJv+QbExnH zZy2OnAPUdB4W0C10fRbAC0jS9FrGk0hX58hRkZ6gZzx0zmvHr7xhrevWMWgeILdjcQX0TSxRwbZ 5EG8sCMhCeABjbyDkDHPr2h+NdB19litL0R3TDP2W5UxTfgrfe6dVyKxrVeXBU4x05nJ/JWSv31u Sl7zOgooorzCwooooAKKKKACiiigAooooAKKKKAOJ07/AIlnxa1e1JCx6pZRXaAdNyfIfx+8a7au J8Y/8S7xf4U1kAKn2lrKZ/USDCg+w+Y121d+N9+NKr3il84+7+SRMeqCiiiuAoKKKKACiiigAooo oArX9jb6np9xY3UYeCdDG6n0P9a4/wABX1xptxe+DtSk3XemndbOf+W1ufukfTI+mQOxrua4nx/p tzbi08WaWudQ0g7pFGf3sH8Sn6ZJ+hb2r0MDJVE8LN6T28pdPv2frfoRLT3kdtRVTS9SttX0y21C zffb3CB0J6j2PuDwfcVbrglFxbjJWaLCiiikAUUUUAFFFFACEBgQQCDwQe9Zk2j7Mvps5s5OuwLu iY+6dv8AgJU+9alFXCcobBY56fUDao8Ot2gggYFTcf6y3dTx8xx8nvvAHbJrkXSf4d332y033PhS 7cNIincbNm6MPVT/APW64J9PIBGDyKw7rQPKSU6X5SJKCJbGYZt5Qeoxg7CfUccnKmu/C4qEbwkv dluuj/VNdHr9xEosuW9xDd28dxbyLLDIoZHQ5DA9xUleZWepSeANZa0uIriPQbhtxgk+Z7FieqkZ 3xZI5BPUZw3DelxSxzRJLE6yRuoZHU5DA9CD3FRjMI6DUlrCWz/rquv3rSwRlcdRRRXGUFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcT 8Q5ft8WleG4pCJtUvI1kC8kRA5JI+uD+BrrdQvU0+ykuGVnK4CRr96RycKo9ySB+NcXodlNe/FOe S5cyvpNpmWRWyn2iXqB6AISoH+wM85r0suhySeJf2E2vVbfi0RPt3O+07T4tOthEjF3PMkrfec/0 HoBwBwOK5rxbZXUXijwv4hjtprmz0yW4S6jtozJKomQIrhByyqfvYyQOQDzjsKK8ucnN3e5oeSaw snjT4lRwaO13pc+nWfni7ltTA7yZGPlcBivKr8w/vYBHXRt30fxNenQPGelW9r4hjOY5AoQXXbfG 3dv9k59RkdNDwgP7Q8d+LtWaPGydLKNu37sYYf8Ajqmuj8Q+G7DxLp5tb2PDjmKZeHjbsQf8/mAa 7cxXLKFL+WKX3+8/xZMOrOc/4R7xZ4cDN4f1r+0bVfu2OqHeQMYCrJ979QB6VPF8RLOzuBa+JLC6 0ScjiSZS8DdBw4HAyerADjrVbTfEmpeFruLRfF7q0LtstNXz8sg7CX+63bd9M4zk9vc2tveQmG5g jmiPVJFDD8jXnryKC2ure8t0uLWeKeCQZSSJwysPYjg1LXFXHw7tbW6e+8N6hdaLdsQzeQ5aJyDn 5kPByfXP0qIeIPF3hwKmv6OuqWo4a+03CsOOS0bHHpzlfpTv3A7qisTRPFuh+Ifk0/UI3nAy1tJm OZeM8o2D+PT3rbpgFFFFABRRRQAUUUUAcl8SbJrrwReSxKTPZsl1ER/CUYZP/fO6uk068TUdMtL2 PGy4hSUY9GAP9aW+tEv9PubOX/V3ETRNj0YEH+dcx8M7t7jwTawSjE1m8lrID2KtwPyIrv8AjwP+ CX4SX+cfxJ2kdfRRRXAUFFFFABRRRQAUUUUAFIyq6FHUMrDBBGQRS0UAef8Ahpj4P8X3XhSZiNOv SbrTHY8DP3o/0/TP8VegVzHjnw/Jrmh+dZEpqtg/2mykX7wdeSo+uPzA9Ku+FPEEXibw9b6igCyE bJ4x/wAs5B94f1HsRXpYv/aKSxS32l69H/28vxTIjo+U2qKKK80sKKKKACiiigAooooAKKKKAK19 p9pqVq1teQJNEwOVcZ6gj+RI/GvPEe6+GupLaXTSXHha5kxBOcs1m5/hP+z/APrHOQfTKgvbK21G yls7yFJreZdrxuOCK7MLivZXp1FzQe6/Vdmv+AyZRvqtyCORJY1kjdXRwGVlOQQehBp1cBBLd/Dj Uk06/kkn8NXL4tLtuTasedj+3/6x3A7uGeG5iEsEqSxt0dGDA/iKMThvYtOLvGWz7/5NdV0CLbRJ RRRXMMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigDJEkdxr1xPcuBZ6TCJMnoJWBJY/7qYx/vn2xk/DGB59GvtdnQCfV72S4yP7gJAH4Hd+dUPEO otZ/DK+uYy32vWLl41AGcl3KhfwiXH4V3OjacmkaJZacm0i2gSMlRgMQOT+Jyfxr1K37nCSj/M1H 5R1f3yf4ELWReqG7uY7KznupTiOGNpHPsBk/yqauX+It+dP8BarIrAPLGIFHrvIUj8ia87DUvbVo Ul9ppfey27K5T+Fls8fgqO7kJMt9cS3L59S23+Sg/jXaVnaBYHS/D2nWLKFa3to42A/vBRn9c1o1 eNq+2xE6i2bf3dBRVkkVNT0yz1iwksr+3Se3kGGRh+o9DXDx3Gp/Di4itrr7RqPhdiEimAMk1l2A Pdk9u3b+6PQ6bJGk0TRyorxuCrKwyCD2IrlaKI7S7t7+0iurSaOe3lXdHJG2VYeoNTVwFzo+qeBb ufU/D6td6NITJdaWx5Q93jPY+vr3/vDrtE1yw8Q6YmoadN5kLEqwIw0bDqrDsw9P6UJgUdb8F6Fr 6sbyxVZidwnh+Rw397I7+5rFbSvG3h0ltJ1SPXLUH/j11HiQDI+7IOeAOrE/TvXc0UWA42z+I2nC 4FnrtpdaHeDGRdofKOTgESYwB7sF6118M0VxCk0MiSRONyujAqw9QR1qK8sbTUIDDeW0U8Z/hkUH HuPQ+9chL8PRpspuPCuq3WjSZyYEbdA/sUII79SCaNQO3orhD4r8S+HSU8S6Cbq2QHOoaX8y4GOW jJyMnPf8K6bR/Emja+G/svUYLlk5eNWxIn+8hww/EUXA1aKKKYBXE+Ez/Z/jfxZpBY4edL6P38wZ b8iQK7auJ1Y/2Z8VtDvchY9StJbJ8f3lO8Z+pKj8K78F78atL+aL++PvfkmTLoztqKKpXOr6ZZEi 71G0gI6iWdVx+ZrgKLtFYU3jXwtApZ/EelcdlvI2P5A5qifiT4SIJTVvNUHBMNvLIM/VVNK6A6ui uJuPir4biOIRqV0f+mNhJ/7MBT1+IaTA/ZfC/iG4PbZbxkH/AMiUXQHZ0Vw6eNfEU7MIPAuoKB0N zN5efyVqfNrnj2ZAbTwjYw57z6kG/QKpougO1ori4pviPOBmDw/bEjnzEkfB+qyc/lUY0r4izSEz eItLhQjpbWvIP/A1ai4HcV59Kf8AhCPiAJcbNE19gH/uw3Pr7A59vvHstXX8K+LLqPbceOrqP2hs 4V/UAGqV78M7jUdPeC/8T6nfOFYx/aJG2B8HaxXOOM+ldmCrxpzcKnwS0fp39U9SZK603PQaZLNH AheWRI0HVnYAV5R4V8KaV4thuW1qfVBq9jN5N5bteOU3DowBzw2Dx0yDgAYFb9z4A+H+lIH1K1so wej3c+zP6iscRRnQqypT3X9X+Y07q50svijw9AcTa7pkZ9Hu4x/M1n3PxE8H2hxJ4hsG/wCuUnmf +g5rnFuvhXpReK2FjJtOWW0jkuFz/wAADDtSp4o0C4jLaN4Gvb9h90x6fEgP1JO4flWFxm1L8TPC sYP+nXDkdksZzn/xzFVU+KOkzswtdK1q4x/ctQufpvYZqKLVfGc0cZ0rwZp+nK33mubkEqP9wBT+ tT/2Z8Qr2cPceINMsIiPuWVpuIP/AG03fzouwCbx7qJUGy8EeIJgehkjSMfmGaoZvG/iKCASzeEo bRCOGvdUWEA++5MfrUq/D65uVddW8Xa5eK/VY7gwKfbapxj8KntPhh4StirNpguJVIIlnclsjvkY yaPeA5G4+KmtpcmLb4fj+XP7id70j6+UaqP8QvHWpArpNpBOQcbrbTZAT+Ej5/SvWbfQtJtNpt9M tI2XowhXd+eM1oUWfcDx2F/jFqCRNFOtqD/rDLDApGfRWXPH1NXo/BXxFvZFe/8AG0kUZ+8sBKMP ++RivVKKOUDzo/C2e8tpYNW8Ya3fxOMBHnYKpHQ4LEHnB5Hasjwj4i0zwm15otz9uNnDqD2n9pSx osSSIFVg+GJVclfnIx84zjFeuV4pqWjXuo+HfFWgrouoPqV74jnurOR7SRYkj3KTKZSAm0qrgAEk kjAOa0jK3uvbX7/60fkWqklFwWz3+R6/RUFndR31jb3cRzHPGsqfRhkfzqeqaadmZhRRRSAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbI4jieQgkKCSAM k4pDSvoecw51jXvBmjDcYrON9SuMcgEMdmR/vLj/AIFXqleEeHfHWj6D4q1zULq1umubqQR2luhU 7UYs7fMxAAzt498Yrv4vGviK6XdbeCLwA/d+0XHl5HrwjD9a7syxFOpOMaTvFL8Ze8/zt8gdKdKT jNWadn8tDuK4X4i7b678M6IyllvdSV5Mf880+9+j5/CpZNa8fTFfs/hOxgU9TLqAkI/ABa5sv4r1 f4iwo7aZDqumWLSxKUcwx7yFO8BiS21s8H096WWvlrOr/JGT+dtPxaJntY9ZoriF0r4hys3n+I9N hB6fZrUcf99q2adJ4U8V3UYFx47vEPpDZwr+oANefco7WiuMXwHdO2bjxbrrevlXkkf/ALMaj/4V bojyGS4vdWumIwftN2ZAfzFF2B2c08Num+aVI0/vOwA/WvN/EA0nRr99e8L6/pFnqOc3FpJdxrFd AdmGev8ALtjkHcj+F3g5B8+jRSn+87HP6EVpQeCvDdsqrFpMAVRgBssAPoTSd2Bmaf8AE3w1dafb TXV/Da3UqBmtRIJ3Q4yR+73Z/Q+oB4p8vxN8KxKSL25kI/hSxnyf/HMUzxL8P7DVYobjSkg03U7U 7reaOJdmfR1xgg9+Ofejwt4mie+bQdWsodM1yMcRqoWO5UfxR/zK5PqMjmi7AiX4m6ZMAbXSdZuA enl26g/kzg0svjvUnZRZ+CdekVv4po1jA9+C1drRTswOMTxP4unyIPBQHHBm1HZ+hjrh/GGn6vLb re6loGkaVch/3EtvOTLnrkFGHPqcfjXqPiLxJaeH7UNJ+9upOIbdT8zn+g964bTNL1Pxbq51HUW+ bPGR8kK9gB6+g/E81yYivyv2cNZP8D2suytVYfWcU+Wkvvfkv8/ktSrp994+bRwmk3Md1cwqWb7W C77T05J6jnruJyB2NR6d4m8QXE6WuueLZvD92cAx3enwqpPPRipUdDwWBr1mysbfT7ZYLdNqDqe7 H1J7mmX+mWOqQeTfWsU6dg65K/Q9R+FaUaUoQs3dnm4qVGdeU6EeWLexyA8E63cus03jzVZo2GQI gIlYH/cI/SsTxt4SOj+HU1OTVtU1Bba6ieZbq6Z8RklW2kncpO4fdI/QY3H8A3WkSNP4R1u50vqf sch8y2JOP4TnHTqBn3rM8Qa7rjaBf6P4n8PlBdRtFFfWLboQ5P7suGPyDOCeT06CvQwNWNLEwnLa 6v6PR/gc0leLNWD4WeFTGjPDPdoRkNPLvJB564zVyL4a+DoXV00G2DKcg5bg/nVjwPq0Wq+EdKfz ka4W1USIGG75SUyR15KH9a073XdH019l/qtjat/dnuEQ/qayrUfZVJU3um19wJ3Vyo/hzQrKBmj0 a0c9AGhD/wA81Jp1nYFmA0q1hZeQUgVR/Kse5+JnhJI5Nmovd7eNtrbSSZPoGC7f1qonj2eeJG0b whrd2HI+eVFjQD3ILEfTFJSpqDTWpxVKWKeLhUhO1NLVd3/Vup3IAAAAAA7Clrif7U+IN7KPs+ga Xp8JHDXVyZzn3ClCKF0Hx1e7xfeLILRW7WFopwPQbxn8c1FzuO2qlfaxpemY+36lZ2meR586x/zN cr/wreG7jVdW8Qa3f4IO17tghPuhJFX7L4deFLBxJDo8JlxguxJLfXnH6UagMuPiR4Ug37dVFwVJ H+iwSTAn03KpH61S/wCFjteW5k0fwrrt8c8EwrGp+pLEj8RXW22l6fZtutbG2gb1ihVT+gq3RqBx Laz4+vWT7H4a0+yiPV7q7Mp/75Gw0DR/H17K5u/E1lZRt0WwtA23/v4Cf1rtqKLAeO+KfCU3hww6 rf6rfajZXTi31WdcRyiMsCrZHoRj6YXoa7Sw+HPhCAR3MOlwzORuWcuSWBHXg4PFdLqFhb6pp1xY 3aB4J4zG6+x9PfuDXIeAb+5sJr3whqcha80s5t3P/LW3P3SPpkfQEDsa9KSWKwyl9uno/OPR/wDb r09GuxHwy9Tq7bR9Ms2DW2nWkLDo0cKg/nirtFFecWFFFFABRRRQAUUUUAFFFFABQRkYNFFAHO+H /wBzbXVj/wA+V1JCPZTiRB+COo/CtasnRv8Aj/1w+t+P/REQrWrpxH8RvvZ/erslbBRRRWIwoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8n8aJZj4iJp t2kkOjz6Ws159jsUmdSJXAcgxPjBIyePrnAM3gbwvrx8G6brGg+IWsbm4Rmks3YTWjHeRnaM7CVA yBgg5HGMDrNT8MXd14qOu2eoWsTPp39nyW9zZtMjIXLk8SJ7DH1qfwbYjwrpdr4Ynl8zyQ7W1yV2 icFi7DH8LAseMnIwQTyAcjmtN1+X/A/Ibk27szV8eapoOyPxjoEtonAa/sczW+eeSPvKMD/ao8Cz pq3i3xZrOAd9wltESCrBEBHKnkZAXqO1dpqNzFZaZd3U6h4oIXkdT3VVJI/IV5j4R+H9lrHhKw1h rm8sdZl811vbWUo4BcgZweRgZ/E12UL08JVn35Y/jzP/ANJRL1kker0VwP2nx94YJE9vb+JtPXpJ D+5ugM4AI+62Bz0yeea1tE+IHh7W5ltluXsr4/8ALpfp5Muc4wAeGPsCa8+5R1FFFFMAoorHvfFf h7Tt4vNc06Fk6o1ym7/vnOaANisXxH4Y07xLZiK7j2zx/NBcpw8LdiD1/wA8YPNY9x8UPDMYX7NL eXruQFW3s5Oc9DuYBce+ajPjjV7qRRpngvVJEYZEl2ywKfoV30roCPSvE+oeHb1ND8X8AkLaat/y znHQCT+63TnocjOD12PE/iy28Pw+TGBPqEg/dQDnGehb29up/UcJ4l8R+Ib/AMzRdV0nSEWbINur G4dBjg7wwCt16jp7GsC+ttU0u2sjq1zNb6E7rEmqW9sjyWoxjYeM7Mnhhz16niuSpXcpOlSevfse rRwboQhi8VC9Nva9m+z9Pu8jr9A8PXuvag+palKzO5zJKe3+yvbP6D+faSa14d0GL7LPqunWYjH+ rkuUVvyJyTXN23w10LULa3nuNV1HVINuYy96ZIWU/wB0cjHPrW3YeA/C2msWtdEtVJ67lLA/UEkV dCgqS8+5GY5lUxs9dIrZLZFC4+KHhWGIvBd3F4c4C2tpK+76NtCn86ibx5qN0UGleDtXuFb/AJaX G2JPzXf/ACrr7aytbNStrbQwA9RFGF/lU9dGp5pxQv8A4h3srCLSNH02M/dNxM05H12lf5Uz/hG/ Gt/C0eoeMBbBuq2NomPwJUMPzruKKLAeOaF8PNG17Udds757uO50y5e3gMcu0CFmZkyO/Jbv3qwn gTUfCVyby20TTPENuFwymMQT7QOwUbTnA42kk5JNdLCf7M+MF1GSdmracsv/AG0jO3H/AHypP412 1d2ZRUqyq/zpS+bWv43JhtY4vQ/GfhX7QLRoI9CvydrW13AsBzxkBh8p69M59q7SqGp6LpmtQGHU bKG5Qjb868gegPUVyh8EaroWZPCWvTWyZybK8/fQHJyQAfu/8BweetcOqKO6orh08c6ho8gg8V6D cWYyB9ttB50LZPoPmHbgbq6rS9Z03W7UXOmX0F3DxloXDbc9iOoPseaE7gXqKKKYBRRRQAUUUUAF cR4/065tTZ+LdMTN/pJzKg/5a2/8Sn6ZJ+hb2rt6a6LIjI6hkYYZWGQR6GujC4h0KqqJX7runuvm hSV1Yr6bqFvq2m21/aPvguIxIh9j2PuOhHYirVef+F2bwj4tu/CVw5+wXWbrS3Y9AfvR/Xg/98k/ xCvQKrGUFRqWi7xeqfdP+rPzQou6CiiiuUoKKKKACiiigAooooAKRmVFLMQqgZJJwAKWsTxBM1zG ujQMRLeqyysP+WcOMO31wdo92HYGrpw55KIm7EPh9d+mfbSCGvpGuvmGDtc/ID7hNg/CtWkVVRAi gBVGAB2FLV1J883LuCCiiioAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACoLy0jvbcxSbl5DI6HDIw6Mp7EVPRTTcXdAYOujUNT8IX+liaGLUpV+z+aQ yxupxluhIBQngZwcjJxmn2/iDw74W0Wz06/1qwgltLaKNozMu/hBzsHzc9enen+IfDtr4j0+Syu9 3lSAAlThlIOQQexrzr+wvDVj4gXw1fX2rQXMpRGubW7CWgZlZo1kGRsdthwnOeCOvG9WregoRtve 3m9PuOLDyxEq9RVVaK+HzXe9/wALL1Z28/xO8PJIsVqNQvpW/hgs3H6uFH61j6zfSeLAYW+HNzdL wUl1B1gbvghgG/nitC38Cavp5X+y/Geo20SjiJ41mX6/OTTzpPxDt5gYPEum3MY/hu7QDP8A3wBX Fr1O45nQ/DXxJ0eOf7Bew2tsFPk2F3OLlRgcBXIyvP0HrnpVK41rxBHdi28Y6/rehJ5h2vDbRmFg CP8AlrEA3P0/GuzkvfiRbSL/AMSrQ71f4vKkaH8tzH+VMvPFHiRIjDqHgGS4jbh0gulnBH0KAEfj SsBHZ/D7wzrKJfy6re65Gwx5k18Z42+nX+db9h4I8M6aCLXRbRATnDJvGfo2a8z1L+yLK4Oo6fpP ivwvfHBke2hUxvznDJvO4ZPp26VY0v4t6jprJDrECarb4G66toHt5UHOS6uoQn6ED9aLrqB69Ba2 9qmy3gihT+7GgUfpXH+KvGDW8zaRozB708SzD7sPqP8Ae/l9elPxJ43iuNNtl0vUbW1S6QM0k0oS QKRn5B0PUAkE8n6mpPBfhuxaBbt5obgcNtRw24+rY/l+dclStKq/Z0fmz28spYOnSeMxElK20Vrd +f8Al166bt8L+Dgzfb77ewk+b5/vS+/sv867uS3hlt2t5IkeFl2mNlBUj0x6VJRXRRoxpRtE4cdj 62Nqc9R+i6I83m0rVvhzezahoMUmoeGZCZLnSwxMlse7w+3fH/1iO40TXNP8Q6XFqOmXKz28ncdV PdWHYj0rQrgda8JX+g30/iHwVtiu3bfeaYT+5vB3wOiv1xjHU+vOuxxHfUVz/hXxfpviyyaS1LQ3 kPy3VlLxLA44II9M9/5HIHQUwCiiigDifHX/ABL9b8La4GCrb3/2aQjrslGCfoAp/Ou2rl/iHYNq HgXVEQDzIYxcIe67CGJHvgH862tFvxqmh2F+CD9ogSQ49SAT+td9b38JTn/K3H/25fmyVpJl6iii uAoR0WRGR1DKwwVIyCK5TVfh7pF7P9ssGn0nUACEurFzGwz7DtyeBgetdZRSauBwpuPHXhs4mgg8 R2C5/eR/urkDjAwBhj17fVq1NI8e6Bq04tvtLWV4WKi2vl8lyQcYXPysf90mumrL1jw7pGvQmLU7 CC4BGNzL83HTnrRZgalFcMPCGveHyX8L69IbdeRp+ofvYvXCnqufRSo6UsXxBm0txB4t0W50lxx9 qiBnt2IGSQVG4D8CB3NF+4HcUVVsNSstVtFutPu4LqBuBJC4dc+mR39qtUwCiiigDl/HXh+XWtEW 4sSU1XT3+02br97cOSo+uPzAq/4W1+HxL4fttSiwrsNs0Y/5ZyD7y/nyPYitmvPjjwP8QM/c0TX2 57LBc/0Bz7fe9Fr0qH+00Hh38UbuP/t0f1Xo+5D913PQaKKK80sKKKKACiiigAooqtfX9vp0AluH xk7URRuaRuyqo5J9hTjFydluAX99Fp9qZpSeoVUUZZ2PRQO5NZunWksbz3t3j7ZckFgDkRoM7Ywf bJJ9SzHvT0tZJb9r28ZXkUlbdF5WJPX3Yjqe3QdyblbNqEeWPXf/AC/r/h1uFFFFZgFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeP3vh 7X9a0HXNc/siIXt3ff2hbG7aRLmJICVijNt5ZRm2BgAT83mDOcCvYKKTVwMSxF7aWUF3pkcxtZY1 kOm3pKyRZGdqsSdpGcbDkZGAVArX0/WbPUXaKNzHcoMyW0o2SJ9VPOPccHsTUlVb3TrTUEVbqFXK HKOCVeM+qsMFT7gg1tzxn/E37rf59/wfmLbY1qKwF/tjTP8AVSf2nbD/AJZzEJOo9n+630YA+rGr lnr2n3cwt/NNvdn/AJdrlfLkP0B+8Pdcj3qZUJWvHVeX69UO5p1DPaW10MXFvFMPSRA386morEZz mu+BPDviKBYr/T0+RdsbxfI0Y9FI6Djp0rzy9+DlxpM7z6OllqtuTkWt6uyRef4ZAfT1z9K9moqe SK2EkkrI8T0xPDVnc/ZNRuvE/hO/c4KTXjpBk9lkXAxj12iuytvCOtqBc6Z4+1BoXGY96JcIR7Fy 2a7G+0+z1O2a2vrWG5gYEFJUDD071x03w6OmTPdeEdYutFmOSbcN5ls5xgZRsj+fWi1hkg0v4h20 4aHxFpd1GOq3drjP/fsLSPf/ABHtpFzo+i3q/wAXlStD+W5m/lUH/CYeJPDhMfirw889sv8AzEtK +dCM4BaM8j1PPfpXU6J4m0XxHCZdI1KC6AGWVGw6j3U4YfiKAPNPFEPiK91S21i18KXml61bsALz T5xcb07q6bVDj8fzFbFt8XLS1mOn67o2qWmpxjLxrbjDL2YLuLDI52jdjnk4zXpFYHijwhp3im3j +074L23O61vYDtlgbsQR2zziizWwFCL4m+FJI97388PGWEtlMu36nZj9a0Lbxt4Wu0DReItLOega 6RW/IkGuY0vxFLp2or4c8e2sBushbPVHiBgux2BJGFf2/lxnrp/C2g3C4k0m0H+5EEP5rihNgXRJ ZatZSxxzw3NvKhRzE4YEEYIyK5f4ZTSDwmdOnP7/AE26ltJAeoKtn/2bH4U6X4X+DpB8mjRQt/ej Y5/UkVzOneFIo/HGsaDb6lqenwxwx3VsbS5aLeCqq5bbjd8wH616GHvPDVafa0vudn+EvwJekkz1 aiuJTwb4itZGez8c6io7JPCkw/N9xpE0z4i20xaPxBpN3EOi3VqQT+KBa4LlHb0VxB1H4j28wD6J o17H3MU5hP8A48zUSeMvEtrIq3PgW9YHqbS5E2PzVaLgdvRXETfEyys8fb9B1605wfMtVOD9Fcn9 Ksp8TvCTRh5NRlgHfzrOZAv1JTH60XQHXUyWKOeJopo0kjYYZHUEEe4NYtv408L3ShofEOlnPQG6 RW/InNbFvdW93H5ltPFMn96Nww/MUwOU1D4daXLdtf6RPc6NqBBHn2chUH/eXPI9untVY6n428OZ OpafDr1mDzPZARzqM916NgZ7KPeu5opW7Ac9ovjfQdclFvBeiG8PH2S5HlS556A8N06qSK6GsjWf C+ja/Gy6jYRSsw/1mMN7c98e+RXN/wDCM+KvDgLeHNcN9bKPlsNVJkAAGAqv94fmAPQ0XYHd1j+K NAh8S+H7nTZcK7ruhkP/ACzkH3W/Pr7E1hQfEOKynFr4n0q70a45/elTLA2MchwMgdeoxx1Ndfa3 dtfW6z2lxFcQt92SJw6n6EcVpSqypzVSDs1qDV1ZnOeBNfm1nRWtr8FdV05/s14jddw4DH64P4g1 1Nef+Kkfwj4stPF1uh+w3OLXVEUZ4P3ZPqMD/vkD+I13yOkkayRsrIwBVlOQQe4rrx1ON1Xpq0Z6 +j6r5PbyaJi+j6DqKKK4SgorMvddsbOY2wdri8/59rceZJ7ZA+6PdsD3qk1vqOq86hL9ktj0tLZz ub/fkHP4Lj/eYVtGi7c09F/Wy/peYrlm71xfPey01Bd3ina4B/dwn/po3b/d+8fTHNMtNO8qc3d1 L9qvmG0zMuAo/uovOxfbOTgZJxmrNvbw2kCQW8SRRIMKiKAB+AqWm5pLlhovxf8AXb8xeoUUUVmM KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKhurS2vYDBdQRTxHqkiBh+Rqaimm07oDKGl3VlzpWpTQqOkFzmeL8Mnc v4NgelSLrd9acalpM2B1msj56f8AfPD59gp+prRorX2vN/EV/wA/v/zuK3YZZa3puosUtb2F5V+9 Fuw6/VTyPxFX6ybzTbLUFC3lpDOF+75iAlfoe34VUXSJ7XnTdVvLcdopW+0R/k+WH0DClyUpbO3r r+K/yHdnQ0VhC78QW3+strC+UdWhkaBj9FbcP/HhTh4lii4vtP1GzPdngMqj/gUe4AfXFL6vN/Dr 6P8ATf8AALo265fWfh/4f1mdbo2ps76MhkurNzFIpGe6/Wtqz1rS7/8A49NQtZj02pKpI+o6ir1Y zg4u0lYZwPkePvC//HvPB4m05BnZOfKulAHQMOGJPrk9Kv6X8R9CvbgWd+02j34JU22op5XzDrhj 8p598n0rr6oaroml63bG31OxguoyMYlQEjnPB6j8Kmz6AJrWi6f4h0uXTtSt1ntpR0PVT2ZT2I9a 4a31XVvhrJBp+vyyaj4cZvLttUCkyWvoko7j0P8A9YC4fAmq6C/m+D/EE1nFnLafeDzrc85O0fwd un51FN40ubK2ksPHfhqS2t5B5cl1br9otZARk5HLAY/3qTA7+KaO4hSaGRJIpFDo6MCrKeQQR1Br jPEONN+JfhrUsnbeRy2EnoP4k/Nm/SsCyuJfCDnVfCtwNc8ISnfc2UEokksSeS0fPTvtOPQ46jU8 banZa54Dt/EWj3KXEdhdw3aMnXIbaVI6gjdkg+ld+WyTxCpv7V4/+BKy/GxM9rnoNFRwTJcQRzRn KSKHU+oIyKkriatoygooooAKr3FjZ3f/AB82sE3/AF0jDfzqxRQBjXXhPw/eRlJtHsypGCEiCZHv txWRL8LvB7j93pEcDf3o2Of1zXYUUrIDiYvhpZWcZXTtc1609k1B9v5AiiLwd4lsy7WnjrUDnolx AkoHtl8mu2oosgOJTTviLaylk1zR7uPst1akH8020g1L4i28wEmg6Rex9zDcmA/huLV29MlljhQv LIkaDqzsABQo9gOHuvFeuFfI1LwBdzwt99YJVuB+IZFBrkdQuNC0+5a80yy8T+Gbxm+Z4rdWRjnP zoHbcOO+R7V6jJ4o0hXKQXX2yQcFLNGnIPvsBx+OKiOsarcf8eeimNez306xj67U3n8DitvqtXqr eun52FzI80b4lNJZz6Vr9vHq2mzp5cl3BE1s6g55KyqqlhxyCvPQV0ngLxPDYaTHo+sX0QeAFrSV nB3220MpJGQMA+vQD2ztXehXWsBhq11amNhhora0UZHoWfcT+AFc/rOlaR4MutIv9O0rz7q6vYdP hSS7ZERmDBWJ2scDGMYwOw4q5TnToOkpKSbT2elt7PSzt5O5tQVBybrX2drd+l/L7jrm8RG440vT rq7z0ldfJi+u58Ej3UNUbWOoahzqd+yRH/l1siY0+jP99vwKj2q1YyX0kDHULa2t5t2AtvcNMpXA 5yUTnOeMfjVqj2qj/DVvPd/16JGFu5Ba2dtYwCG0gjgiBztjUKM+v196noorNtt3YwooopAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBVu9MsL8YvLK2uP+u0Sv/MVT/4RvTk5thc2 hHT7NdSRgf8AAQ2P0rWorSNapFWjJpeorIyxpupQnNtr937LcRxyr/6CG/WlD+JIv+W+l3P1hkh/ 9matOiq9vJ7pP5L/AIcLGcNS16P/AFuj2knvBfE/o0Y/nQ2uTlGS68PagEYYbaYZFI+gfP6Vo0Uv aQ/kX4/5hZ9zz/VPDvhy5uTfadZ67oOo5JFzp1nKpyeuVUEEe3vXD3Onap4cOs3C3Dz6dd2xW5H2 WS1EhZwoLRvGF3/MMFSuOvPKt7xUF5Z2+oWktpdwpNbyrteNxkEVpQnh4VY1HF6NPR+fp+oO7Vjg vhv8Q4LzSv7P1Ux2q2USJFcMxAdRwA2f4sD8fau3/wCEt8Pf9Biz/wC/orhdYgsfBniLw/p2l3qa Dp2om5N7cAxkny0Upl5g2OTjH+1XdaTLDPpkMkGp/wBpxHdi73Rt5nzHvGAvHTgdvWtMXWwtavKd ODSfml66WdtfMUVJLUP+Et8Pf9Biz/7+ij/hLfD/AP0GLP8A7+CrtFc96H8r+9f/ACI9Sl/wleiH 7l75n/XOJ3/kDSHxTpv8Eeoyf7mnXB/XZir1FF6P8r+9f/Ij1KH/AAksTf6vTNVf/t0Zf/QsUn9u ajJ/qfD12B2M88KD9GY/pWhRRz01tD72/wBLC1M37b4ik+7YabCPV7p3P5BB/Ok8vxDL/rNUsoV9 ILMlv++mcj/x2tOin7a3wxS+V/zuFjK/sWSX/j71jVLjPUCcQj/yEFNLH4c0aNxIdOglkHSSdfNY f8CbJrUoo+sVdlK3pp+QWQ1EWNAiKFUdABgCnUUViMK5Lx/o13rNjoyW2n/b0ttWgubm3yg3wqG3 DDkKc5xgnnNdbRSauBmaFb29tYultof9jIZCTb7IV3HA+fETMvtyc8fStOiigAooopgFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGLqWgf2j4m0P WftPl/2X9o/c+XnzfNQL1zxjGehz7VtUUUgCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k= ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: text/plain; name="pascal3d.py" Content-Transfer-Encoding: 7bit Content-Disposition: attachment; filename="pascal3d.py" p1=FreePosition(9,-15,4,color=CYAN,fontcolor=GREEN) cp1=FreePosition(-10,-20.,13.,name='A',color=CYAN) p2=FreePosition(1,2.0,-22.0,color=CYAN) circle=Circle(p1,cp1,p2,alpha=1,style=OUTLINE,color=BLUE,precision=50) circle1=Circle(p1,cp1,p2,style=FILL,color=WHITE,alpha=.3,linewidth=2) cp2=CircumPoint(circle,angle=20,name='B',color=RED) cp3=CircumPoint(circle,angle=60,name='C',color=RED) cp4=CircumPoint(circle,angle=190,name='D',color=RED) cp5=CircumPoint(circle,angle=260,name='E',color=RED) cp6=CircleSlider(circle,(8,-28,22),name='F',color=BLUE) P=FreePosition(-2.0,29.0,12.0,name='O',color=CYAN,fontv=GeoTOP) l1=Line(P,cp1,color=BLUE) l2=Line(P,cp2,color=BLUE) l3=Line(P,cp3,color=BLUE) l4=Line(P,cp4,color=BLUE) l5=Line(P,cp5,color=BLUE) l6=Line(P,cp6,color=BLUE) pl1=Line(cp2,cp4,name='pl1',color=BLACK,linewidth=2) pl2=Line(cp1,cp5,name='pl2',color=BLACK,linewidth=2) pl3=Line(cp2,cp6,name='pl3',color=BLACK,linewidth=2) pl4=Line(cp3,cp5,name='pl4',color=BLACK,linewidth=2) pl5=Line(cp3,cp6,name='pl5',color=BLACK,linewidth=2) pl6=Line(cp1,cp4,name='pl6',color=BLACK,linewidth=2) pip1=LineIntersect(pl1,pl4,color=GREEN) pip2=LineIntersect(pl6,pl5,color=GREEN) pip3=LineIntersect(pl2,pl3,color=GREEN) p1a=FreePosition(22.0,14.,-9.0,color=PURPLE) p2a=FreePosition(0.,7.0,6.0,color=PURPLE) p3a=FreePosition(14.0,6.0,3.0,color=PURPLE) planea=Plane(p1a,p2a,p3a,show=0) cp1a=PlaneIntersect(planea,l1,name="A'",color=BLUE) cp2a=PlaneIntersect(planea,l2,name="B'",color=BLUE) cp3a=PlaneIntersect(planea,l3,name="C'",color=BLUE) cp4a=PlaneIntersect(planea,l4,name="D'",color=BLUE) cp5a=PlaneIntersect(planea,l5,name="E'",color=BLUE) cp6a=PlaneIntersect(planea,l6,name="F'",color=BLUE) pl1a=Line(cp2a,cp4a,color=DARKGRAY) pl2a=Line(cp1a,cp5a,color=DARKGRAY) pl3a=Line(cp2a,cp6a,color=DARKGRAY) pl4a=Line(cp3a,cp5a,color=DARKGRAY) pl5a=Line(cp3a,cp6a,color=DARKGRAY) pl6a=Line(cp1a,cp4a,color=DARKGRAY) ip1=LineIntersect(pl1a,pl4a,color=GREEN) ip2=LineIntersect(pl6a,pl5a,color=GREEN) ip3=LineIntersect(pl2a,pl3a,color=GREEN) plinea1=Line(ip1,ip3,color=RED,linewidth=5) plinea2=Line(ip2,ip3,color=RED,linewidth=5) plinea3=Line(ip1,ip2,color=RED,linewidth=5) plinea4=Line(pip1,pip3,color=RED,linewidth=5) plinea5=Line(pip2,pip3,color=RED,linewidth=5) plinea6=Line(pip1,pip2,color=RED,linewidth=5) pcircle=Projection((circle1,circle),planea,P,color=BLACK,alpha=.2) slate(axes=0,scale=35,bgcolor=[.8,.8,.9],width=600,height=480) ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: image/jpeg; name="quadric.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="quadric.jpg" /9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYHBgUI BwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy /9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy MjIyMjIyMjIyMjIy/8AAEQgB4AKAAwEiAAIRAQMRAf/EABwAAQACAwEBAQAAAAAAAAAAAAAEBQEC AwYHCP/EAE0QAAEDAgMEBgYFCQYGAgMBAQEAAgMEEQUSITFBUXETImGBkaEGFDJSscEVI0Jy0SQz U2KCkrLh8DQ1Q1SiwgclRGNzg5PiFtLxNnT/xAAaAQEAAwEBAQAAAAAAAAAAAAAAAQIDBAUG/8QA PBEAAgEBBAcHAgUEAgIDAQAAAAECEQMhMfASQVFhcZGhBCIygbHB0RPhBSMzQvEUUrLCotJi4nKC 8pL/2gAMAwEAAhEDEQA/APqSIi9YzCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIi AIiIAiIgCIiAIiIAiIgCivrOhqeinZkY42jkvo48DwKlLSWOOWMxyNa5rhYhwuColXUXg4p95XHG qgfLlkhkLJWeydx7COCU1WJiYpGmOdvtMPxHEdqj2nw46ZpqXhtfH+I8+a7SRQ18TJYpLOGscrDq FnV1qsdhu4rRpK+Op7OPxy36ziWmmNRHmkjd+cj2kdrfw+e2Sx8dRCHNIfG8cwQo9PVPEnq9U0Mm 3Eey8cR+G7zWDBJTVHSUwzRvP1kXb7w+f47ZT1rAiUa92Vz1PaaROOHzNgeb0zzaJx+wfdPy8OF5 FXTCqhADssjTmjePsu4rrLFHPG+J4DmnQhRKeV9PMKSocTf81Iftjge0ee3jaKJXPBjScu/HxLHf v+f5OtHUmojLZBlmjOWRvA/guFYDSVDa5nsWyzj9X3u74XW9ZC+OQVkDbyMFnsH228OY3fzUiOSO qgD2kOjeEo2tF4omqi/qRXdeK9vj7HQEOaCNQVFoonUlRPGbdAXZ4uZ2j5965UTjSzuoJDoBmhJ3 t4d2zlZdsThe+nDofzsLukYOJG0d4uFEnVV1ohR0ZOzrdLX6PO8kPaJGOY4XDhYqFhTy2B9K89en cY9d43HwspVPOypp2TMN2vF1Dm/JcXim2MqB0bvvDUfPyVpO9SWaizTalZPHHzX2qWKIi0OYIiIA iIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiI AiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgC816a+kmHejWENqa4Suc59oWRGzi7iF6VVeOYJS YxTtE7WiaG7oZS3N0TrWzAHQkdqpaPu0WJKk4uqxKP0S9Nqf0hww1Ja8Rsdke9wsWH9YbuezkvQv pnRuNTQuF3aujv1X/ge1eCwfEfRz0EwOvjoKunrwy8r3MmDnvfoACBsFyBcX2r0Po7X1eI0rqymb Rtj0vTQ1PSgG1yLgWaRpsuPisYt0o7/VHYmq1uTfJ8dmcC+a+DEonRva5kjT1mO0cw8f5hbU0s0N Q2mqbvv+blA9rsPA+R8lx+oxE5mF0FXHx0e3nxHkVIpJ5TKYKmPLK0XD2jquHEcOXxVq6+pEo0TV PJ4ret2d5zmjfSTOqIGl0bjeSIfxDt7N/Pb1kZDX0os67Xatc06g7iFH6STD3ZZnGSlOyU6lnY7s 7fHitpI30khqKcF0TtZIh8R29m9SqJU1a0Gm6Ot+p7d3E2pah+d1LUWE7Bodz28R8xu8L8nf8uqs w/sszut+o87+R+PNdpY46+BksL7PHWjkG4rEErayGSnqGAStGWSM6jmOIP8AW9Tu5MhNXypd+5e+ cHcd5os7OmYxrpYgXR32ZrLWlqW1dO2UCxOjmna07wVrHIymkZQlzyQ27XP+12X7NFHk/IK4TD+z zkNf+q/ce/Z4KFK/S5lVDSWhrxW/dnWKb8jxCSlOkU15Iuw/aHz7yu+I05qKKRrNJB1mHg4aha4j A6anD4vz0R6SPmN3eLjvXemnZVUzJmey8X13KUsYMmUn3bZYrHivn5NaOoFVSRTDTM25HA8F3VdR fk1fU0h9lx6aPkdo8firFXg6xvMraKjN0wd64MIiKxkEREAREQBERAEREAREQBERAEREAREQBERA EREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBER AEROSrKVLliGwNNd60nb+Syk6DIfguoFtXeCwQZLgi4t5KEEj8+eifolPJNh+Mw4bT1jT0z5IJ5g BPYloaAd41Oy2zXWw+iejFBVn0jxzE42HDvWXRiOklAv1W2Jc0bidhB/nY4p6FYT9LUWLQzmg9TF mtjs2O5NxpsGpPO6s5y5zWmupxI0ezU097jtsNR3XXNo6N2fsdthHSWlnk7nzqdJHxVEjY6thpas fm5Gnaf1Xb+R8FKhdMGyw1rWmMMP1zTYEdvAqEHyOpyDkxCkO0i2cd2w+S70j2No5zTPfVMFh0Dz 1mcRrr3FWrnOPkazj3eHTg8Vwdw6SWhGWYmekOyTa5g/W4jt8eKNvQtEkF5aJ2uRupYP1eI7PDgu MDsgc6gOZjfbpJNC3lfZy2clmF2UuloNQD9bSv0IPZwPkfNSnnOIcMa+ernse/DqdyOhPrdGRJC/ rPY03v8ArN7fiu+SOoDa2CzpGNOQ3sHdh7PwUSJ3WdUUOoJ+tpzob77cD8fNSZZDE0PpAx7GuPTR s2k7+8Ka3UzxRnJOt2Obn7PK0dkxOlu0mOeN1xf2o3j+u8HgVmGRtfSyQTsAkHUlZwP4LSQZstfR Wc63XYP8QcOa1lPSNZiNJ1nAWewbXt3jmNfMb1atM4oilVRXbNz2eedZ1oJXjPSTm80Olz9tu539 bwVzg/I8RfTnSKe8kfY77Q+feUqfroosQpOs+MXAH2272/1vC2qmiuoGT07gZG2kid28O/Z3qNV2 rqibm6u5Sue5590YxMdC+Ctb/gus/wC4dD8j3KwBuARsKjRvjxCgva7JWWIO7iCuWFyudSdFIbyw OMbr77bD3ix71dPvXYMynFuzo8Yunl/NeZOREWhzBERAEREAREQBERAEREAREQBERAEREAREQBER AEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREARNqbT oqylS5YhjZzW1g3bt4Jo3Zq74Ja2rvBVWGbwkZtmGY96wTfRosFkEudfYPJCQ3VvimDoSUnpTgL8 fwSWhZVy0z3atdG62u6/Zvt2KtoKN2D0MNK6WqjfCwMM9s7JCN5G6/dzXqZI3yQvDX5HEEBxF7Fe GwPAcewg1nr9XNWB8znRSRPGYN7WnTVY2qvqr2dnY5LScW8c8OjLjMHHpyzU/wDU0Rvfm3f5qVnE mHGUvdM4yWMtKLOAHEb7X2a8lVvkDZMzw1snvEGB/jscptXNkw2lzkguJcS9+R193Wbpf4rHSznO 89Gdm6xSznyW4wZBMBI/68M0FTT6SM+83+uSy6UPa2aV+bLoyrgGrexw/oclBdP1g95Obc931b+5 46ruS2bM4zCxd0x+00Bkh5j2X9yaec53lnY5z/G5ltCSSaqUxMextmVLT1JL7ARfju81oHvNQXND Ya23WYT1Jh2H57RwXGpl9Ub6s1zAR1psrLsLjuc3aNN/io7ZWljY8uaM6tiL798b/l8FbTznPEwV k2tLV7ZvphwLGOUte+emY4EH6+nO0HiO34rcuEJ9epevA/WVjf4gOI3j5qCJ72kMtnM6rai2rf1Z G/13aKRHM+OZz2R5Zds0AOjx7zeP9XWikZzs2s9Ph4rXqOrXto5hKwh1HUG5I2Mcd/I/Hmtoj6jX dCf7PUEujO5rt479viuV4ooy8Wfh89w8foydvdx4eNsiPOx2HTvN7ZoJd5A2d4NvJWrsz9mZuKeO Gv54rXuOkP5FiT4DpFUXezsdvHz8Ud+S4y12yOqblP3x+Iv4Lmc9dQuYbNrKd3g4bDyI8itqhxr8 JbPCPrWWkaN4cN3ySt13Fe6Ip3u9r7r9n7+RZouVPM2opo5mG7XtBC6roTqqo4GmnRhERCAiIgCI iAIiIAiIgCIsXA3oDKLUvYLXc3XZrtXJ9bSxtlc+oia2L84S8dXnwQHdFAkxrDIn07H19O11T+ZB kH1nLiqD0g/4j4BgVLO81LameF/RmCI3dm/oKHJK9sk9ci8/6JeltD6X4Wayia9hY7JJG/a0q+ke yJhfI4NaNpJsAikmqoUbuNkTaEUkBERAEWQCdiEAb7lRUkwiIpICIiAIiIAiIgCIiAIiIAiIgCIi AIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIstaXHTYqSlS5B7EAL6DXis7BZup4rbK49VosOKxYjqtB 7SqpomlDGje0/BLb3Has6N0GruKWA1ebngpqDGr9ANFkFrNNqdZw4NWOq39YpjcDJDnHj2rzU0Xp Iz0zhfHPG/BHMPSR5QMhtprtJJ7rL0wzPFrcl5z0vrMdw3DYp8DpoqifpQHxuBJLb7rfEqG6YvDY C9fGyQEPY1wO4hRqnDKeaGOJodEGA5RGcoF9umwqRA574I3StDZC0FzRuK6v9pWlFSd6LwtJw8Lo ecm9HpmXNPUNN9xGUnw08lwpKGqoZXz1EBMcLS5rWC4c7doPG4aF6SeZlNTyTyGzI2lzjwAXix/x TwMYvUYbM2eJ0EZkc4tvqBctsN4HwK552Fmmr6HbH8RttFxlRojTYi907nylwkuTrtb59Xx7lhuI tNxcEO1Ito7tI0B59XmrCr9NvRed2GRyjp24j+Yd0VwNba8NdF53EcW9Hn/TQhpK+KbDbOe0N/Oa 2BF93y1XLaWFpG+Mkz1bD8T7JJUtIuPVF3HiIuHZzcD2r625naPvdxUuKqaQ1o0DT1QzQsP6t9n3 Tt3XG356+vnH0M6lhqpBiZOUujIyG9u/8NVJfiuIwyYlCMMqI/VCY2OlByy7uGg321B+OSlaxVZq iOiUux2slCxnpN6qM+jwVfXLm5Xl987Bo2XiQDscN4P811LWdHHG2T6hzr082+J/un4eXP5fF6Y4 mZKRvqkTGPcG1IkcSWi+1pHDbxG5S4ce9JK1uMQQvpmZ2gUxdY5z8L238dNTZaw7VZyuqc1t2C3g 66DWGrOGHR3O76OahzXCty5ZYvq6qMcOPdt5ErvC5tLiBYCOgqhnYdwdvHeNe4r57Ty+mErsGqJZ YQei/KMhF5QDq08XWvpz7bS48GxiqGIU/wBMgRVbM9A1pPUAP2T9k20st1a7M/z6nE7GqvVM/wCr 6VWo9xh5FPUVFE42DXdJH91387qc6aNrXOdI0BvtEnYvnUfo/iD8OwOuqManLqR7WTv2G+fYdf2T 4qTP6Cx+t4jTS4lUmLF2nrNcQWuBzC+uptpu0Hbda2drdSmXh8HHb2UnKuu+vFY/Pme2fiFHG+Jj 6qFrpvzYLx1+XFRZPSLCI2VbnYhT2pPz/XH1fNeTP/D/AA+KuwGmlqamQULHOY8v1cQ64B7NT4Lv W+gOCUxrJWRyH6Sma2cOfpYnW3BWdpJJumBnGwrKMa+IvJPTDAYn0LHYjFeu/s9tc/4d6hy/8QMA ijxJ/rD3fR/54Bh420466KQz0I9Ho48PYMPYfo/+zuJN26379ddVrheA4U+TFJfUKctqpi2QFg64 G2/fdW0p1SM4wrFy2Fe//iTgofhIjZUSNxM2icGaN1tr3qPJ/wASoMmN9DhdVJJhe1trdJrbu/Be sbhWHQRQhtFA1tMPqrMH1fLgtcIgjNNJVPY3NUvMlrfZ3eVkbkmlUKFYOew8kPT/ABCf6CfT4BUO ixE/WE3+q1tw7+S1f6W+lD24+2PAcjqL+yufcCTXz010XvrN0AaABsAGxV9cfWqmOhb7J6833eHe fgUlpJYk2cNOVHhrPIsxj04qW4DNHhkLGT61o9wX27dNNVt0Xp/P9OxmWniDv7vfppru7uO9e9A0 AAW1g3bqeCnR2szPADA/TeoOBSyYvFG6n/tzRoH6+emnNR5/RXHhNjNPLj8r/pJ35M1hN4he5PYA NNOPJfQKuqbTw53Ak7GsbtcdwC5UdM6PNPOQ6ok9ojY0bgOwKrjV0NYRSjpyw1bzxo/4eVMgwJ8+ O1TpMN1cf0mt+OnDkurf+GmHl2M9LW1T24obvGe2TXNp3r26yG31OgV9CKMqnjo/+G+BsbhQcJ3u w3804v1drfXvUXHf+F3oxWUtdUTA0b5ndNJUZ/YI2nXQDbde8uBsHeV5z01q44vRPFYjd8r6SSzW 6m2U6nsVZRio3otFOToip9HqXB/Qv0cqIMBkbidT1ZHMZK3PI5w6vIEa8uKm4Di82PYtX0uI0vQT 0BjPRMfnj6wuDfeR4BeS9DsFxmldS43Fh8UkbMJZFFF0gaJXE5uqbaabSftE7tV6z0Uw2vpcWxaq npXUVDOWClpHOH1dh1iA0kC5O5Ugm6XXF9PQ8OO34PVoshpPJZ6o7St6mRgNJWeqO0rBcSsXttSj eIMlxKwuE1bS07c01REwcXOAVJiHphh9K0CnkFQ4/aju5redlpGym13Yt8ETFaTpU9EiIqFQiIgC IiAIiIAiIgCIiAIiIAiIgCIiAIiAg7DdCQiIhAREOxCQihRYlC6QRTB0EpNg2QWvyOwqbe+xQpKW BadnKDpJBEUeqdVMyvp2MkA9ph0J5H+u5G6KpEY6ToSEUWmr4ahxj1jlG2N4s4KUdQiaaqiZQlB0 kqBRxWwOqTTiQdINy4NdVUbiJSZ6exIkA67ewjf3eG9bRUdLUhtSDma65GU7b7Vy21ratxjZUrW+ uzdvMe0QtouP0qNVve754k8NuNTpxWbg6E2aNyjl08MvXYZI3OAY1g1Zz7Fu+lDpTOzKJw3KCTp3 gbVppJG+glizJqI+m6AvyutmDeI7OK3MwD2sLwwkXaL6lauFN0zBMWOmb1mg7RuuPFRpqphquhkZ 0bz+ZlOtzbdwO3T+ajSqWUK4bCY2SRxdaMtDdhP2uSyx4LWuLQ11rkOtceCrDNLKDR1Mjo5trJGG wdbePmPko+eZs5eG2q2D6yMaCZvEdv8A/DxUGisK3Vz8ehduew7QSUD2bm281HgnZUQtljN2ny7F 0WyhFo52mnRnQkO2vPeFxrHuioppYg18sbC5rToHEBbIDYo4PUyCj9EsbqvSDB21lXQPopc5Z0bt 4G8divn+2eaoMO9LKDEPSabBaeOUTwAukJYQGkG3nuV8dSog6g1khZPBJHJfI5pabG21fNsN9AvR TCPSKqqarFRU1MjjGYaiUXBkB0O8ki9uOq+mO0Ab4r49i+D1uOelvpbRUNIyWaV1K3pnOAMQ0JP3 dNba6DQ7qzp4mqhHrKqqwHDfSzAvR2LCaeSUsdJE7L/ZwASCNNbkHfuXq20FIySaRtNEHzfnHBgu /nxXhp/RXGo/TbCMSZNDPBHLLJNL0diwFoaAetroA0EDdc3X0IC+3YrR1toGjIImtaBG0Nbo0AbO Sy5rXbWjwWxN+SAXV97BT13othGJX6aijDjc5mDKb8dF5bEP+Hs1MTLhFYSR/hy7+Oq+gk7hsWFz WvY7G1vlHlcel2X8Y7Z2a6E21sd66nyePE63BHuo8XpZmscQcw2gj7TTxHHssey0pccpJjlZWsa7 pM0byMobJ71uDtQ4bjfcbr3tbh9LX07oayBkrHfZcNn4L5v6R+gc1EXVWF5pob3MP2mDs4rzrawt 7BVs+9HqfQ9j7f2Ht8tC3X05v/8AlvzwPUU80NYZYSMtPXtILf0cwFnDvtfuPFd21D5sFhnk/P0U oEvYWmzj4XK+S01fVUrg2OaRmVwcBfQOGw24r0mHelVbHJO2ZrJ2VY64cLa2tpbfs3LOx/EIO6Sp n59To7X+AWsO9ZtNKj9usfTefRq+zanD5zs6Wx5Fp+dkxg3ip+HrDPivLt9KoKnC4I5o5GzwuYXO Go6pF77x3q8rMToq6Cm9XqY3np2HKDqNeC9GNtZzUmnifOz7Fb2E4KcXc2s8y7ecrHHgLqFgrCcM jk3SF0l/vG/zXXEpBBhlTJe5EZsByW9IzoqKGPc1gHkumtZ3bDzVdYPe/Rfc4YvKW0XQR6PncIgd +u3yupcbBHG1jRYNFgoD/wApxtjdrKZmY/edoPK/irIAlTGlXLyFp3YRh58/t6nKeZlPA+V5s1gu Vww6neyJ1ROLTTnO4cBuHcFzqCKzEGUzdYobSSni77I+fcFPUKs5V1IS/Ls9HW73w1fPI2Ltw0C5 SyshidJI4NY0XJK3JsLlV8bTic4kI/JY3XYN0jhv5Dd48FaT0bliUs4aV8sEbU0T6ib1ydpG6KM/ YHE9p/lxvPDSeXFYLo4x1nDvNgoVRjOH05tNWwtPu5xfwVoQk7oqpW0npOpPuBs1PErBJO0qlk9J qFoPRMqJbb2xEDxOip6v0vkqWvio4RE4Os4yPBdbsDb+K6I9ktnhErGjeJ6Were6U09IA+b7Tj7M fPt7PhtWWYdB0EkczRP0wtKZBfOOB7OxeP8Ap6ughDIujp49v5uxPbd7h8FElxSunaS+qneOIcQP 9LQP9S1h+G2kr5tfBadtFLRhh652H0GNtPSU7Y2GKGGNoa1oIaGgbgoc3pDhMBLTWRvePssOY+AX zpzzM7U9I4cnn/eVo559guP3c3yv/tXXH8Lj+6XIx0z29T6Z0MXsxzP4ZgI/4iFWz+m09rw0bGt9 57iflbzXlSejNh1Cdw6p8OofIrm7qv1Aa48RYnxynzK64fh9hHVUq5su5/S3FpwSyZrG8Y2D4jMF Vz4rX1Ny+snkG+zz/tPxaor/AG+v7e7MNfOx8CVye67gLXcNgcMxHcbO8CV1wsLOPhiirbBcXkuv c73DU+LbHxC4ucHdfR1vte1b9ptnDvCPdnNzd2Xebuy/B481yc69nkg8HF3wePgV1RiVPuqIi+IO kIiIAiIgCIiAIiIDjUzvgjD2QPm11ay1wOOqjsxekc4NkeYXn7MrS347VOWkkUcrS2RjXA7iLqrU q1TNYSs6UmvNM2a5rxdrgR2FZVe7B6YHNAZKd3/acQPDYsdDicH5uojqG8JW5T4j8FGlJYrkX+nZ y8Eud3yixRV30nJDpVUU0f6zBnb5a+SkQV9LU6RTscd7b6juRWkXdUrKwtIqtLtqvXQkoiK5iDqL KvOFiI5qOeSnPug3Z4HZ3WVgirKKliaQtJQ8LK71mupv7RTCZg/xINv7p/mpFPiFLUnLHKM42sd1 XDmDqpK4VFFT1QtNE1xGw21HIqNGSwdeJpp2c/FGnD4/g7oq71KrptaSrLm/o5+sPHb8UGJSQG1b Svi/XZ12eWviE+pTxKg+g5fpuvry+Kk2aCKeMslja9p2hwuoXqM9LrRTkN/RSnM3uO0KZDUQ1DA+ GVj2ne03XVS4xleVjaTs+70fwQG4mI3BlbE6ndszHVh5O/GynNcHC7SCOIRzGvaWuaCDtBUB2GmE 56GYwH3NrD3bu6yjvx3lvyp/+L5r5XUk1NHBVNAlZcjVrhoWnsO0KOxtXSPyF/rENr6+2PkfJbR1 VSwFtVT5SLAPjOZrvmp0LARdpDnbzwWM5KT7tz1lZStI/l4rmvLflmRkuATd1r5Vq+I3c6DK2UgD M4XAt2LeSCM3L7gm1y02Jt2qJVV01PJrTF1Nb249XDmOHK6Y8BCLbpDEkS1UMD2RzSBrpNGjiea5 VBmbCPUxG0g5sp2O467ua0DqbEKc2LJo3bd6jdFVUGsBdUQfo3HrN5HfyPiraKV+KLwisMJLU8Hn LM56fEh0UrXRVEeuU6PYeIPzWrnlo9VxFocxxsyYaBx3X4H+hwXQilxSPM1xEjDoR1Xxn4jkubpn Qg0+Isa+J2gmt1T2OG74fBHt66vM2j/alhq1rh8fyayDo2inrCXwkjo6gbWndc7jwP8ARODnubT1 Lss41gnH2v58Rv8AG2XNfRsLXA1FE4WIPWcwfMefPdze1kdPZx6egfq14N3RcDfh27R8KvOffUXV +Gfh7Vg9WowyWSnnfJktINZ4m/aHvt4/1vVtHIyWNskbg5jhcEHaFVOBd0cU0n1m2nqR9rsPb2b9 3ZrBUuo5X525GA3mj9wn7Y/VP9b1MZ6LvwznqVtbL6iqsfXP2eouUWAQ4Ag3BWV0HAU9dj2D4Li8 FPVvjhqKppLXkAXtuvvOugV1HY9fcNVUY4zBoKduJYxFAY6Qh7ZZGXMZ7FZQVENTTMkgeHRuF7j4 LN402g6ak9pXFlJTQVEs8UEbJprdLI1tnPtsud9l39kdpWALlWAAvyQm/JCdw2IBfkp3sAC6E7hs Qm+g2IBdN7Bi11to3tKE20HitUxAWQ2+3Ys2A1PgsE3StcAeK9LPQqKvEldhrRHU7Xs2CT8CvnLM 8Mjo3tLJGHVpFiCF96XjfTT0bpqqB+I0z2R1sYu5oIHSAfNeP278PUvzLFX61tPrvwP8fcKdl7U6 x1PZue70PGxWfHO3TKW5m32C/dYf6VYSHpIYSRcucywIubbrA9bwcVV4Y5zgD1Q5pLMgJzC/YNf6 2HVWBk6KjgjMUjmXBtltdwNrFjrXO4kWO3asLLsXaJRq4NLfd6nr9p7X2eFpoqabT1X+nAtJ6qpZ B0MdRL1nNaWNfmtr7j+sO4q+p/SCqa7o3MgnINsrSYpLfdd+K8294mfTNlMIjPWDJJ8zmG3u2zDl ddZpZ5KDoXSSyXfljzU4Gp7ZDr2Df2L2LH8P7Sqy0ks+aPm+09s7JaJQcavPnqPQYf6QUNNSz1ld 0kDpnuk+sYQC0bLHZsAVHhH/ABcwfGsRmoo4J4nta50TngWfb4Kh9Lq6PDvR57ZJHZgMojFWC430 /NjSyo/Q/CsKoJ4sRkmlbiBa0NYHs+rLxcDr2FyNm3ft2rq/pJ2bjByq+GrW8fY8e3tbK0npwVFs ry1bOJ9cosaw+mptJX1EzznkdDG54Lj2gbEn9JujF20TmD355GsHxv5LwkHpIyvxGopGWPQy9Fmm qnEyH7WWNg1t4HcVbSB8TM0bW05P+IIWRDvzkuXoWPZ7BruX0uvOWc5TlWWssavH62uaYI+iYx1r ugY+YHsuLf1vUebFa7KI5KuWJo0DC+OJp5AXcobWhzbMAeCb6dJM08fdaFgPEZLGERn9G1zGeAYC fNdUOz2cXXRVSsptrRrcbPL5gS4Ok45xJIO4vLWrj0zImOLZA1jR1g14GUco2k+azKAxofK2wJ0e 9guO+Qk+Sw4ueASXuaBaxLnNPjlat9VxRbzjLH0pLZ2tbHoWPJAd/rJPkupc4M1zWHEuy+eRq1Yd D0Xs/wDb2D9wfFy5ggvJaAXjblAJ8sx8wrqO0N1MtO10ezbeMfNo/wBy5Eh7tAHuHABx/wB58wsu Od1j13Dj1j55z5BauOc5T1iNx61u7rfwhaJFTDnZzlPXI+yTm8ut/CFzuT1Bc/qjXyF/4VlxDgW+ 3baNoHd1rfuhc3PzMte7B3gfxAeDVdIAEAFrd21rfwHzauWazTkNm78uzvy6eLQj3AtBcQW7rkW7 rkjwcFzeSXAG5cNgIJI5A9bwJWqiQYLgGaEBh4WDT8WnyXJx+xbtyZf9p0P7JWXP1L79hdm/3fJw XJ2wty6bS3Ls7S35tWiRBh7gRckWG8k2H7XtN79Fzc45iesHW62nWt2jY4doWS7UEFxNtCDc27D9 odh1XEu0AGza0M+LeB7FqkD76iIvhDpCIo9UyrdlNLLGy3tB7L389FDdFUtGOk6VoSEVd0+Jxe3S RSjjHJY+BCfS2T8/R1MX7Gb+G6p9SOu42/ppvw0fBpliihR4tQyHKKljXe642PgVLbIx4u17TyKu pReDM5Wc4eJNGyIikzCIiAIiIAo89DS1P52BjjuJGoUhFDSdzLRlKLrF0K76MfFrS1k0X6rjnb56 p0uJwe3DFUN4xnK7wP4qxRV+ml4bjb+ok/Gk+Pyryvbi9O02qGyU7v8AutsPHYpsc0crQ6ORrgd4 N1s5rXCzgCO1QpMJo3uLmRmJ5+1E4sPknfW8VsZbV1+PcnIq71Svg/MVokb7s7b+Ysnr1XD/AGmh fb34TnHht8lH1KeJUH0K+CSfT1oWKEXGqhw4pRzuyNmDX+4/qu8CpYIIuDdXUlLBmU4Sg6SVCJNh lNM8yBhil/SRnKfLauXR4lS+xIyqjG5/Vf4jQ+CsUVXZrFXGit50pK9b815EBmLQhwZUtfTP4Siw 8dinN+sIyajjuWHxCYdGWB1+IuLLeKmipPZvsAy30AHAbljKc66KZnNwn4U16Z5nVrGgXOvauT+r C6OC0ZN7EDYeNlBmq6+GVxfTiaG+hiNnAdoP4raDEqWodkbJlk3seMrvAqYqLfexNPpTS0o3rdfz +5y9brKU/lcPSs/Swi/i3b4XUqCpgqmZoZGvHYV22qJPh0Ez+kaDFN+kjNj/AD71pSUcLydKzn4l R7Vhy+ORifDo3yGaBzoJvfZv5jYVzFbNSHLXR2b+njF2942j4dqx0lfR/nGCqiH2maPHMbD/AFop FPW01WCGPBcPaY4WcOYKrdW65mj0lHvLSjtWrzxXmaS0kFXlnhfklt1ZYzr/ADHNcvW3wDosRjbk OgmaOoefu/DtWz8O6J5kopOgedSzax3MfhZYFeGHoa+LoSdMx1Y7v/FHc77n0Jj3lSPeX/JcMsx0 EtEM9J9bTnbATs+6fl8FzYA7NUYeQbn62ndpc79Psu/rtXQ0ktKekoHjJtMDj1T90/Z+C5joayUu jLqWuYNQRY942OCq1S7Pl8GidVWtd/8A2XujkAx0TzAwyU5P1tMdHRni3hy7x24JEjYwZbn/AAKn b+y7+tew2XR5L52tmtS1o0ZINWydnby2/FcnAmR7DG1k7h9ZTu9iYcWnj/R3FUec53GqznXx8pbT eiqjSSdBK3JECBlJv0ROwfdO493YLnavPuLZWBrnXA6jJHjVpP8AhyDt479N9iZOHVpif6pUXFjZ hcbkfqk7+w7x2q9naU7rwMu0WGmnOOOv5z93MxLDaTFqCWirohLTyiz2E7VwwIYRT0ZoMJkiMFI4 xmON+bI7eD2qyy5tNy8/gvoxg/o5idZPRuLZ612dzXyX7dBw1WzxuPPPQ6uKE2Fgo1RiVFSt+uqo YxvLngKGfSGgJ+qM0/DoYnOB7wLLSNlOV6i6EVRagbzsQm/JU78YrZPzOFSgbnTPawfEnyUOfFq1 mk9dhlGfdzGV3yWkezTbv+fSpFUekAvqdiw+RrRq4NHaV5N1XNUm3ruJVH6tPB0bfEj5rm+jGUvl w9obvdiFZfy1C1XZKeN586DSPRTYzhtO7LJWwh3u5gT4LgfSCnOlNTVdQ7i2EgeJsFRMqmMGSCsp GN2ZaCkMh8dfgtnRzTDrRYlMPemnELfBtj5LVdlgvFnovUjSZZzY3XBuYUUMDeNVUBvwuoJxmqmO mJQ24UlO6U+OzyUP8nhk0+i4pd4Y11TJ8iuxfUzC+bEZW9jW07B42ctVZQWCz51XUiptI6plBL/p KVu90szYG/6bFQj6tn2YcJB9+qeFlwp+ks5tAJBuke+qkHcpAMxZoa1zODI2U7B49Zaru5p8og89 idNLBVioDap0Moyuc6AAZtoAadWjadFzPRTtazLHfpOuC505Nxe+U6jbuN73VrVwU9ZE6JxpnP7J JKp4PdsVPC6o6TopXkQxPHVLwA07Pa9pnf2niuaVnoT2V8vsz1bG1drZX4x8+G8sIXGN0Jb031cB cOjyxgA297rEabdqhNkbMIGjI5jSXvcxrqhu37TDq3uXWRglmdlyPvZjSGmXOd5bLuKrscxEYXg9 TWmV5lkGSF3StZLbd1We0Oe5XrR3avJ/DM+6lpP5Wb39zz+Iub6S+mUNM+RooKQ3c4WjaDu5A6De ldhtVieOY9SYfRxzOcYA14JeY7WOj3WsLA3O06WFtl56E4TUUGGur6gSCaqtL0rQ1tmnUAuf8gr0 U9I2aWpbFA6WcgSSAOn6Q7Bcmzb7gs4dmVrH6knjf5Ua9zjnKsqRR5rEqSsnqqOkioOi6KsbUSSN mYcwA2lkYvmPfs2716lrDTtDnHITr0pjZFfsJfd3kstuSBI6zwLZBJ1m9mWIXI5lCRA/QNied9mx Zv4nrts7JRba18jNu6gc0yAlzTIN+YOkHcXlrfJaiTM3JE4vA9xxdY9ojAHiVyldna8hzQ8aB8jb 5Xc5DfwCOHULpBcH2i+5ae278rfAFbJVIpQ0jaGTOe3qyuAD2scB5NDneYR1hJYgdINma2bzzO8g tnEmPUksHEnL/tZ8VroyPbaPs0b5ZW/FXVxDdTWQ3dZ+rtwfqfB1z4NWslyQyTua/b4O/wD0WHyC KO+rWE2FtAf4Qf8AUtCcoynqg7BsB7uqD4OV0mQZc7XoyLn3Dr/pN/4Fyc7P1T1rfZ227tbfuhD+ jt+xb/bb/Yubjduti1vHUD4gf6VookBzg5tyQWjeTcDxuB4tXN51aTtPsk7e65v4OK2dmLgdcx9k m9zy1v4OPJcnFoDjfTY7YB36W/eA5rREGC45nHf9o637za/7wPNcnbA3cdQ2wIPbbYf2SCsucbgW tl1A10+Y5gkLi51xxDtdgObtsNHcxYrRIGXP1DgTfYHZteQJ/hcuDnbtLB1gNgB/2HyKw+UXIBzE jd1rj/cOeoXJz3EXNmtttPW6vzb8FCtoVpHvPd84Gy7POlZ91b/jEy83vc3udQdLnt4O7d64udcE kkg6kgWJ7exwXRkMksgZHE+R56oaNST7v4FW8PoniUkQmqpIaCM+zJVPyXdu023+KStZR8clBc3n mTSxjhWT5L59D7QiIviyQiIgCIiA5yQQyi0kTHDtCiOwahJuyHojxicWfBT0VXCLxRpG2tIeGTRX fRksf5ivqGdjiHDz1TJi0WyWnmHBzS0+OqsUVfprVcaf1E34knxS/krvXa6P89hzj2xPDvjZZGM0 w0lbNCf14yB47FYLBAO0A800ZLBj6lk/FDk/mpwhr6Sf81UxP5OC7gg7CCo81BST/naaJ/NoXA4P TDWJ80J/UkIHhsU1mtSYpYPBteVfj0LBFXepV0f5nEXO7JmB3wsmfFotsNPMOLXFp8NU02sUx9FP wzT6etCxRV30nLH+foKhna0Bw8jdbNxmhJs6bojwlaWfFPqw2kPs1rqjXhf6E9FzjnhlF45WOHYV 0V61MWmsQiIhBympYKhuWaFjxwc26iHCWRm9LPNTng11x4G4Vgiq4ReKNYW1pBUTu6ciutikG+Gp b3sd87+Sm0jpZ4y6aB8FtocQfgu2R2hvlHFHOuMo0b8Vh3pS0YO4idrp3OKW9XfboaR1tNKD6tNG 8by111naok2GUc7s74Wh/vt6rvELj6hVQ/2aufb3JhnH4+avFShqqaaFlLwypx+V8FiuM9JT1Tcs 0THjtGxRPWsQg/P0Ylb70LtfA2W8eL0jnBr3mF5+zK0tPntVtODul1CsbWPehfwv9DT1Cop9aOrc B+jl67fx80+kJ6fSspHtH6SLrt/HyVg1zXi7XAjsKymhTwug+tW60Vej5/NTjBVQVLc0MrHjsK0q aGnqrGRnXGx7TZw5ELnU0NFK7pJA2OT9I12V3iFWTYq3DnZW4nT1IH+FI7r9xH4KyjOVzjXgTFQr WznR77uvzQn5K+j/ADbxVRD7L9Hjv2Hy5rpFXUtXeCQZJCNYpRY/zVaPSmD1cSmjqwToQ6PKL8zY JNUV2JRaYVAIzqHVEwuO3q3V12e0WF25vLDmnfaR81mj6E80M1Kc1BJZv6GQ3b3Hd8Oxc3S01a5s FXE6CoHs5tDfi1wVNK7EsPhf0mOUkYPsxu2t5OJN+8KIazD6lkfr1TidRI53VZYtBI4FoA81Zdku xu4Nrncupf6rbri9qufLXm8v6mcUkZixAsnpjp0umZvMfMeCgTYtQsIpzU+uw36rorvliPdt+PNR I8PnZO6op8FbJGRcCte3Nfsdr5rMc8zHvqH1tDhzyMrosmpPebd4Cuuy2daOr817aVR9ZpVVPLb0 o96uN/pJ9RGZoaSeZps0TloY2Rp0s8EjxHlqFxmlrpX9DIynhDHZc8kpc5jdwdpqOBvu231UV1RH NAY3TV008jz9W1uSOU77OaBt47exHUp6WR7cJyvZZwFVJd7eJG3M3+ttgpdjZRxjz+7XoaxnNvHP kvenoTKbF5pWuhqMbddnV/JIQ5zuY11/oKtrfRxmIY9TYqxuLTmFuVwlcGNcO25BA7AFu+csqTG+ up43sF2CFt3t3gX1uNu644aqNjFLV+kWFOpKOrxRtdmBJeQ0AcHDq8RuW8HRZVekV1OW2sr9KOer PQCE0Y6T1XCKAe/I/O7v2fFamtMxt9K1M36tDTWae+x+Kj0dJLhtFC2oZhVPK1gD6id2ZzjxI0+K k+tGXRuI1lQfdoqfKw/tEfNb0rfjng/U5TBpM9y7C6iU+9X1VmnuufgubZ2U5yMqcMpTvjpoekf/ AF3LZ1GCM78NZbaX4jVZrdttUZV5RkhxCMDZlw6lzEftahWx35/+wNrSTjUYtVDtIp2j+EqO9kNO 8F8WF00m500hmk8NPiur4HyAukpKmQe/XVWRp/ZF/gtI5Y4urT1FLH+ph9KZCP2tR5KVuzyr6A6C SaYdWbEJm+7TwCFh73W+K4TMhjI6aCjjO41tSZn3+7/NdJWSPbnmiqXt96tqhEz91v4LnC9rdKaS FgO6gpM5/fNwpS156e6IN2SSvblilqnt92kphCzxf8iuUrImutUNpWuOwVdQ6d/7mzzW84DReoYQ D9qvq7f6G6LWIvy5acyZfdo6URN/eft7lK2rPmruaBu185jyxGqLOEEDadni7XwUY9C59iKVzxuc 59W8d25ZeInPyyCnLxumkfVPH7A0Hcukjnsi6zp2x8ZHtpo/LrKyuwz7MB5lbFeR07ItxllbTM/0 9ZUNUI4cTZIwx2fYtcxp011yvdo7v7OJVzGLuzwsBd71PBmd/wDJJoVXYoc4Y4u6Qsd12uf6xp+s wdUDkqWkaxz1R0dmlS0ptziRmOLpnsL81yWltyXDYLmJuhtuI0036Ly2JhvpF6Y0+H5omUFFq5zW iEB1uGu0gDeVbY7iUeF4YxwL2uLLtGYCxN7FpbqbEnQ7uC6ehuHS4dhrsRqC5k9Z9Z0mZrBlI0Bc 658B3rna+pSxWu/dTdsNO0bXj1PRMhEbA4R6MHtti6w/blOvcFpcVZEgJmYW+y4OmB7dbNaVq9nT HO5jsrTfpQCSDxEkhsRyC2celaXuHStGpOso7i6zB5rvS2nJgZzl4yNcXW+wHZrdhbHYeJXEPB6S GMujcNHNZZpB4gMBJ7ymtSyORr3ujGuX2w4cCOqwLYOBjs272Dh1m+DcrB3kq5GBqBkeQ0ZZN+UB rj3DM/zCxo2T/u9mjv8Ac/4LBdePQ3jHD2PLKzzK4l7stg0CIG1yQGkW3ey34q9NpGJuXXkNvzg4 au/3O8SFpe7i4auG0jUjmRcjvcFhzWgi4AzCwBG3kCAPBhWHXc7Kbkt3EEkdxBI/darpEM1LrXkB AG94Nv8AUD8XrQ3GgFs24aZvhf8A1LYvH5y9yNM9/wDdf/eOS5ucbloFi7UtAtfutc+DuauiDBHV LTazdrbaDmLWHe1vNcy/VpvqfZN9TyN/4XHktXSNsNQQPZ325a28C09i5vcRnvYe+T/uuP4h3qHa wi6N1exXmsbGclWlFtdyDnCzrkWv1tlu/S37wB7Vye/Kbk2LRvJBHzHm1ZdmLt92jtuAfEgeLVOp cAr6lnSiDoYWjMZZj0bQON92m9tx2I7SaVXSK348l8ltGyji9J7rlzfwVL3uIIa2wGuugHbYbObd FoY3SFwddx2kbBzNv4h3r0Pq+AYcfymqlrZmn2IG5GB3ae3iNCuc3pS6nGTCqGCiYLgOazNJbaRc 9utvBQoueEXLjcuX2H13HwUjwx54kem9GMRnZ0ksbaSC/WkqXCOx/HtGhXYx+jmEk9PLLiVQ3rFs XUivsOu3nbTYqOqrqmskzz1EkriLdZ5Nwd1+B3cCpOGej+J4w8eqwOLCdZXjK3mfgQuh2bUa2s9G OxXdceVDByqyRP6WVMbHRYdTwYfFlyHoWdctGli463G0HtUGnoMY9Iak5Y56l50e9xNhuNydm4hf QMH/AOHdFS5ZcQeamQa5Bo0fjwXsYKeGmibFBEyONosGsFgF59r+KWFhd2eNXtzeyyg3idERF86a hERAEREAREQBERAEREAREQBERAFq6NjxZzGkdoWyISnTAhSYTQyHMaZjXe8wZT4hc/orJ+YrKmL9 vN/FdWKKn04bDZdotVdpc7/UrugxSL2KuKUcJI7HxB+SetYlF+coWyDjFJc+dlYoBdRoUwbzxJ+v XxRT8qelCDFiYfK2OSmqY3uNhmjJHiNFLdU0sMgZLMwSEXDC6xI4rrYNGup4LjNTw1P56Jkn3hdU pOWDuKaVm5YUR0MokNw4HkUVecGov8Nj4f8AxPLfgsfR1TH+YxGYfqvAcPxV05K7R5F9CyeE+a+K liirrYtFvppxyLPxT6Qqo/z2HS843Bw/FPqLWmP6eT8LT8/mjLFaSRRytLZGNcDuIuoIxqjzBkj3 wvOgErC3XvVRPUUbXltX6RSyO/RQkDyaLreygrWtH7mU4Ts33lRlhWYZHGGvoZ46N4ddxJOW33QQ FTV87g5oHpB07h7UEZDb8soJC7Miw6QgwYPWVp3OnB/3lTmDE2ttDRUFEzcXuzEdwA+K6oWUbONF dyT92HbTlJOd/G8qQ6gFN0z8Gr6tw2iTM8f6/wAFMo6qedtqGiw+maNud93Dm0D5rM9RldlrPSFr Xfo6ZjQT3alR2wYfKT0WHYjXuO0y5g09zyAtWpPG9b6v1aXQrWFHdfnOJ3qJ3exW4/BHf/Dp42g8 tbqAaDD3xFlHFis7ibktBa0nk6zSu8GFV1K/NRw0+HRbSJJc/kR81yq8Rq45ckmLNnaNsdCAH+Fi fNVT3cv/AFXuaJOtISrxu9bjrBBiNBTl0eDUTSDo4kNfbtGw+K0diMdZE6OsxmGLc6GGnAdys690 ldQMa178NrakONs9ZIQzvDjp4LvIx7qSzxhFFTnj9Z+CNKtK13OnvpPoRW7SkqX4rKREfSMn6L1O LE6oN0LZbtjcORLV2ka+B3q4w6hw9jx+dJJPfa1j3rjlYKcxU2KV9U4m4bExxZyBFreK69A6mgbM 7A4w8DWSqkzuHaAMxUu5Uldxw6tehKdWtG/ZqfHLNJZ21Bjhfij6uEaObRxXAI2bj8VoKVtRLUlt BLUtAtesm1YbcyRysthNHGXuixmKGWQXENFCXEHiW6/ALiY3CB8tXhtZNK/q9PNKQw9padngqVpe 7un/AF9y6Vbo/flf0NZn9HE1pqKOEloc1kbbuBHhY8mqvqM88b3g1j5A0MZIR0Rj4AjS4tflYnUH S3kcaR0ETp6Km3FlM3O/mRpfwKgytbOwOaKyUNcY2yEiJg10B9mw4ixVZxp3uuHW7/I2sbSt2ff/ ABI/otS1mE4fIK+qw1kxkJ6edpc8/C/cr8SPqP8AqMSqh7tPEIWHkTb4rxTajGcM9JHOjZSRQBnV Zob7jpoS6/Z47/W0tUcVizt+kaxw0e0yCFjHb2m1j8VrZzTV+fN/9jmtrBw70cM5wN5Io4CHyUtB S8JKyYyv8P5rcSyzizaiunb7tLAIWH9p34rQOipJMrH4dSyb2wMM8p7+PcVs9ss4zPjrqhvvVMwg j8BY25hbZzX/ALHOc5WQwuBkgoYHbnVkxnk8PwK6NdPOLMfXzt4QxinZ4mx8CucL44yWwTU8R3sw +nMrr9rzp4hYnaLZqmKzT9rEKqwP7DdPgrbs9b+TINSIIZdRQxzDiXVUv4/FdJHTyMzS+uPZxmlF NGO5vW8QsRGV7ckDp3M92kpxCz953yK4kQtl/wCl6YcM1XKPwU69+fNdQZgy5iaUxAnaaKn6Q98j tPFJiwOy1AYXn7NXUGR3/wATNCtp3vyj1l0mU7PW6gRNPJjNvIrWMPbGehEjY9/q8Ip2d7nanmFO 958/kGS6URbZmxDgG0sY/wB4XKNoc7PA1pf71PF0jv8A5ZNCssax788YjfJ70LDUP/8Akf1QtZHN keWPLZHb2yvM7u+NnVCstiz5a/IB2SVxEjmSOG1r3OqXd7G2a1RcTc8U3R5pmvuMrOkaxw+6xu3k VJkcW2jkc4cI5JMvhHHqR2Eqj9KMRGEYJI8tcwu0Y1jWwjNucGi79DrrwUSXddc8C1m6TTPLTxDH vSiGic5jKOmcS98beiDnDjfeSBpY63Xu9GX6Isjy2Dn5RH3Fz7uPMBeb9DKT1KidVVD3iqqyHF2Y MBBAIBdYuvrfQL0jpBS9HfMHv0EmXIX83Ou49wCw7KlJO0X7s04mtrXSo1nbwBayCNry3Ixtmtdl 9n9uTdyajz1+lcTbc5+oaeIfJp4NT824PJLXu2Od1HHszOu89wC5vl6OUANd0rgSNC1zhwubvJ7g u2hhezaR17PkO/RzzfXsc/T91q5PeJAHBwLrkNc/XUaaF+v7rVvl65BFn7wLh3ld/iWrUFrQ7IPv ZdPHKf4nq63EGmV/TEuc50hN2hwOYcr3f5BPtOcD1h7RbtHMgkjvc1Yc8dHqWiMnTZlPwaf9SjyT 7AxjpXDY1ouRx2jS33W81bDElJydx1zANu2wa7eCAHd4IB8XLk8gDIbANF8pGzttbTnlHNc3dNIM 3SdHc2zsNyddBmv5Zjt2KXSYLVVNhDTPc3Mes8aA7TtFh+6N2qOdFXBbXcW0IrxPkQjMX9dgJ2gP JtqN1738Hd25cy11nNe7QE3aBYDnpoe0gc1fnC8OpSHVmJteXC4bTAvc9vEHfY7QcwtzXI4xRUYa 3DMPYHjRs0/1h03tA0HJuzgs03aYVl0Xz6lvqKPgSXVkSjwPEK3rQ0zg0i/SP6gPef8A7BSRQ4JQ 5fXMQfUSN+xSN0aPeB4ccunYq2sxSsrnXqKmSQE6DNpccALa8rO7CoDnX37etx79NvMWI3hbwsJ0 o3orYvn7IylaOTrJ1e8vJPSKClFsMw2nprdYSP67mk6Eg7geIuNt1TVuJVlY/NU1MsjgdMzrWJ4b mnl1SuBJLrDjfQ7zvuP4hodhV1hnohiWJlriwU8PvyNtp2N4cRs3grbRsOzrTldvePyVvZ552trd trDx04cW94VthfoviuLkGOAxwm31shsLdh39h7ivoWFeh2GYYwSvZ6xIBfpJdQLdnz29quX1UcYc 2OKSVzbWbG2wPInReZ2n8bjG6xXm/g1hYSkedwn0Ew6hyyVX5VN+sLMHGw/G69THEGNDY2BrRoAB oFBNRiUh+qpIYm7nSvufAfisGlxGb89iGQcIYwPjdeHbdrtrd1lVnSuzqPikl19KliQGi7nAKPNi FFT/AJyeNp/WcowweB2s0k8x/XkNvDYpENBSU/5qnjZyaFj+YyaWC1t+VM8iN0OLN2VdO7nCfxS+ Lt3Ur+8hWKK309jfMfXeuK5fBXdPirfao4HfdmP4J67XN9rDXn7kgPxViijQf9z6fA+tDXBdfkrv pOUe3htU390/Ap9MRD26eqb/AOlx+CsUU6M/7h9SyeMOTfvUrxjVHvdI370Th8lsMZw47auJv3jZ TS0HaAtTFGdrGnuUUtNq5fcaVh/a+a+Di3EaN/s1UR5OC6tnicLtkYeTlzdQ0r/ap4jzaFydg+HO NzRw34hqn8zcPyHra5P4Jgc07HDxWVXnBqHdG5v3XkLH0NAPYmqW8p3filZ7Ov2GjY/3Pl9yxRV3 0W8exX1Tf2gfiE9QrG+zicx+8xp+SaUv7fQfSs9U1yfwWKKu9WxNvs10R+/Df4FMuLt/xaV/7BHz Uab/ALWPox1TXX4LFFXdJi7f+npX/wDtI+Set4i32sPafuyg/FT9RbHyY/p5amua+SxRV30jVN9r DKjm1zT81tHiRfI1ho6lpcbas0UfVjrIfZ7TLXyTwLmy3zBo6u3iq+fFKeCZ0TxKLbXCJxB5G1lq MZoN84b94EKn1Iyd7uKxsLaSqounAnoobcVw9/s1kJ/bC7Nq6d/szxnk4LVTi8GQ7K0jjF8jsi1E jDse096rMVmgszPi3qTBfNlc27vFawjpuiM3cWjnNaLucBzKoMRnpHVLjNjj42HZBE5oPkLqJbCJ D1Yq/EXdudzT49VTIBWMbaiwWnpWcZngEdzQfiuqNkrN19aL1r6Fa1IQiwuUgxYVW17txna4jxeV Iloqqpja36JoKZjfZdK65b3AfNb1ElTGPy7Haelb7sLQD4uuolsNmOkeI4k/tzZD42atXHTV9683 60RMZSi6xdGaeqw0c16n0hdE79FA6w5WJKjzUzKibPSQ1taN7aiNxaf3iB4K2hjrIm2pMIo6JnGV wuO4D5rlPUFrslZj7Wu/RUjACe7UqsYqmjG7hd/ivcv9ablpSve+/wBRG3Faan+qw6gphxvr+7s8 1DZij53mOtxSdjhtipWN+AzFd2wUkxvFhVdXH36kkN8Hn4BSSa2CLU4bhsQ/bI+FlOjR4+nvpMjT VHVZ9Ct6fC3SBjKCeqedjqyWw8HG/krAy1UMIcZsMw6Hdbrnx0UV7qOqP1ldXYi7aG07Mrf3mgeZ R2GdIM0ODxU3/dqZ7P8AK9/FS9L93X7v/UflulKrr8epl0lNVGz6zEcQPuwtLWeIAHmtJcKErQ6L CYaQjUTVE9njwvfxWrCKdpidjr3P/R0bC88j7R+C5xUFXJNn9Q9ZjvcPr3EDzcbeCOtKSVz5f6ro y0bnWMsM7zrNUzNp+hZjgkmaAMlHBmvztcrVkTxSmaowOaZ4PtVc5c08hqR4JUYnV0cwiM8EbNgj oGNdIPH8EqZoG5XS0OIVZf8A4lY8tj727vBVbSvTouS/1XVllGToqVrfdj7+hyllpalrTNXUtI9v sspIT0reR2+S6uppqmVkjKerrIramsfka7uuLfurad8DYxBPVYfTNP8AgU0PSPH9clykw71qBogh rntGx9TKI4zzb/8AVSlo3+l1fT/JjSrRV53pZ4Gkc4FUWukpsNdFsipWdISOy2h8FHdTvqI55xBV 1DSczamR+RrxwcwbfDwUp9TU07GU9LU0gto6KiizPHeAR5BcJ4IImGM0M7HPOYzVknUvxygEeICi Spj8fHqzSEm8Pm5Y7fQ876SSVlPSZcMZSvaTnfBTtzGPj2+IsNy6dIaaeOVlKWgRh8sMrrtmbuJD dB2Cw8FcVMkwa19LKKuSKM2FDFkv2F1iLd4VNhVe6ow9tVU0EMMzHnoxUPLnGx0sDa47L7Nx2rKU KSqrn19n/kdVlbKmjK9bK3darzuPUUlV09NG6nnc1jgCIqCltbsLjcX8FmZkcRBmhp43HY+vnMz7 9jAbeBVGMXrpK69Q+aWncOvFG4x2dbZYWIbYcD5q4pZonNvTSQxlwuWUMBlk73kWB5hdNnaKXFZ1 X80cPaOzysmm1czteaZtg6tmZwY0U0Y7zZ1vFcozEx56F1OyTYRSRGok73nQd4ScMDh6xHE1x2Gu m6V55Rt08Fs4yviu41Dohve4UsQ8OstqXbs+XocxpPa4FSGi+z16fMTyiboVm8nRbZ+iHC1LEP8A ekNgD6udu0UUIAPOV+h7lzux0vUERlHuh1VIP2jo34KVsz8ryBtCGgl1Pa52mjhuTzlfoVzJZJJo InyA/rVTwf4WHyWZSHvyTWc/3ah5mf8A/EzqrMmZoayZzmg+yyZ+S/KNmp5FW11efkGkrszskxzO 9yd5kd/8UeiOJYBG8ljTsY94jH7MbOseRRx6JgZrGw7GkinYeTW3eeRWhPRN/RNdw/J2u+MhPgrL dnhsIMktgZl/NtdsbpTtdyaLvJXzvG5mY/6UQ07GNfSUj9TCwxlz94N7kndvO3YvWekOIuwjCJpY myMllGSPomiIlx2HW7zbuXnvR/Dpaal6eaQxz1DmOc4us5wJ3W61766fgvO/ELWiVksZeiPR/D+z K1k5z8K9T0VEZIXMBkcHSsILj9WXEHXZdxPK1+5TGh0Dct3mQjh0b39wu8nwUB7HRgtjeYnMlOaw yvIO+wu42vvOxTx1czG7drmNFte1rT/E5dHYro6OzPrUjt9HJTWv2w6NGG9IJC3RjjfMxgIceBs2 7/EhA6wc1mg+0GbO8NNv3nLTOHRENA6IbQbZBzAswd5ct4aKqqgMrJJcrbizdBbeLj+Fp5ruuV7O DE4PmjDMpc0s00Fi3Xs0Z/Eub3TPkDcoaRqzPcu7bC17W3hoV19Ew07iauujilt1msu9zT+sQc1u 24HYubq7BqOIuipTOHagzOAZfeCBo7mMx1Wbto0uvztZaKvuRWwYfPXSFscMlQ++pAvv3kH4u7lZ fQ1NSADEq2KLf6vCBI89wFh4HmolT6TVNRA4Mm6KnaPYgblAHdY+JaqrpnvB+pdqb5Ttd+ta2ztI PNVVppfupwvfP7GrsLWneVON3qXxxiipNcPw9hd7PTVJ6RzhvG23cCSOCr6vGa+ra4TVTy3Rrhew 4i+wX/cKrQZ3NLnZA97bC13eepcP3h2Bd6TCq6uIEEc0mts7RYNB3XGwcie1q0ShHvaD4v7upH0o rxTXlV/bqcHuHWzcetfj233/AHgOxy4STsDSS4m+h337Ndv7Xc5XtP6KFjmR10zKcDZGD0krtdoa 347OIXqMP9DsLYWyyxTPLRYNkIAPaANgPDZ2Ktp27Q2eVX8IKNitr5L5PnTGVFTL0cFPJK91xYNJ 2C9uJ5HUbir7DfQrFq/6yoDaSIm95CS89ttt+3Q819Kgp4KVgZTwxxNGwMaAui861/EbeapF0znW XUoR8MF51f26HmsM9C6PDi17qiSWUG5IaADxtw7rL0UMMcDQI27NAXG58St0XBKs3pTbb33kStZS VNW670BN9uqIshpO5LkUMItsoG1w7ku0bBfmorsBqtsh4W5pnO7TktbpeAiIpICIiAIiIAiIgCIi AIiIAiIgCIiAIiIDBIaLlZa45CCLXWgBc7Mdg2BbrNVm6vAqqt11CwWpYw7Wt8FsuNV05p3CmfGy Xc6QXaO5apVdC9aGXU0D/ahYebQq3E8LpJYLNNNTG93PdGDp3qHU5Y/7x9IC0n/DhysB+J81wYzC 3OBp8Lq6942PlaT5vPwXRHs0fE7/ACu60JVtOODa8yOyjwCGS5rKislbugufJgW4wunllMlFgM7H n/Ekl6IHwN/JWjTixaBFS0VCzcXnMR3C3xUSeSFrsldj73v/AENPZt+4dbzW+jGS0cd2PSNEFbWi lpaTqc24biEN3z4pFRxb2h5eR3kj4LjUCgqIjH9K4jWSbA6C5H+kW8V3iio3ODqTBKipfulqdPN5 v5KY92JtZeSagw+Mbbdcgc9PgihGFyu5L0qyJWs5PSk6lXRYfXwSh1HhzGM3vqQ1pPbcXPipdXLX QwkVON0lISOqI2gEHmb38FydJQTG0mIV+Iu92C+X/QAPFd4IZo+tRYJT0oO2SpeA7npe/ip0Esev zJv0ErRydXTl8FRG2aaVoNNU4pc9YuL2t8HWaVbfl9NF+T4fQ0MYG1xDiO7T4rE9S5rslZjrGO/Q 0bBf5nwXJlPTykOgweqqztEta4geDtR4KdFpXt03/ei6CVppOtF5ENuJyVE4iq6urnvoW0Vso/d1 HipDw2nHS03o+5zxslq3Xce/U+KlyzVNO0Cor6DDmbmRDM7uJ/BRwynqT1YMSxJ3GUljPA2B7giT Ubnny0V1Yc4uVdGmd9TnHi7p3OjqMUFK5u2Gmg6/ne/cFymnoGkE0FXVk/4lY8hneDs8FOLp6OKx dhmFxcB13fIA+K4FsNWdRiWJu/8Aij/2gjxUpSUbnnyov+QrZ6VWruOfQ2Fa6ONodX0NCwi7Y6dm Z5HYT+C4slo6uQhsdbiDgbF1TL0bL9rTb4KQGuo2WIwzC4j+28/DXxXMU1NO/PHDiFe7e8joY/8A bceKhtrw8/4/7ELQvrXOdh0fUmjAjNXh2Hg7IqdvSP7j/JadEyr1bS11f/3KqToo+9un8K51EELY xBMcNoGXuIom9LITxGzXuKRUMT22goqyqBFs9XJ0UZ5t/wDqiqnXrmn+THd0cb85wMTtgsKeWahh A/wKODpXjy+S1dhjH0zg2hmMZH5yunyN5hov8AuMVJT0smSLEDG5pv0GHh0hB4Em48gs1eGyyk1D 3Pp2fpcQna63aG6/JL13mr3z9vVmlVVRU7t/xebxvmZR+q0uJukeNAKGnuORds8wtWwTUkfS1sdF HJ9mSskMkl+xtz8Vu41M9O2KCtrKohtiaeIQxntzaeRXOmY+jux9RSQ1G8QxmeY/h5qyVHcqZzim VbrF1ax2fb3OdhURiqqKWsmkHuN6Fg7xZxHivP4bjlNJi9fh80TqantmLmU4kvrb2iNN3tD+fohF WD6yv6OSPfJXvyDuYCR5BU2JekUWGYhTwVoe6KpdkYaZhhYeGtr25FUaotizjq5pG2le7+urYq38 iXXtpfUGGCBvRl1g6eoa53cwGw7iCo1JT4qJpPV+rTuAc/pHGNt91zcOtbmFZywwyN6GCOEk2LmU TOkNxudIdPEblGqg6HEYWeruGw/WPFQ8fsA6dyOzvT2Z48maWdv3HFa645o3xRKgradhjjjmjjml 2RUUbbk7wZHaHuXQlnTaCETD71VKPk34Kiq6HJiDrNkZ0huZKgBh11Omxw7LX8FLjrqagoxEH1Ew G1geYYmu4X9vb71hpzV4WrTeln2fnRlLTsyaTsr67s06llN1nhtRYvOxtU/pHHlCzQpKS1jRM5wY dGtmeIWnkxmp5FVzMbhZC4EPh160VOwRADi52rjzHFSYqmEyObBIwPLc7uhAb1eLpH6kdoW0Zxev Psc07G0hijsXmGK2sUR2bKaM/wC8rS/RMLm/Vxu2lo9XYebjd5PaFrHLEXudFIzMG3c+I3Nu2V+0 cguLq6mikLmys6TLcujOY2/8j9o+6FZyjFVbzv8AkrGznJ0im2dwDG0vb9W12hePqWu7C913u5gL Rz46dhlc4RtO1/5oO7C913u7goUmLQNLnxOzvFg50dyRfcZH6+AC85i1W+RpeWPc8gtLW7Qe29y7 j8F5/aPxOzs4tw73p5v4PW7L+DW1rL83urr5L5oR8UqY8cx6KCJkZiicW9JG035m9y7hxtfZqryO mbA1zcxc7pmgA9U6W1yDrX3bR4qJ6Nej9U0l9VKKeeZhmu82eGW0sB1iRrcaXV3FBhtNhzS+Waqm dM0vjabMIzbbDZcadYhefZack7aS0pO/dhTpU7/qWSpZ2bpGqW+96+NK+ZyZGZp6ijjaS+TURxjf b3Wm3b1nK1pcKAw6OoxCphpYAALOIce5gAaO8FcnYu+GuJoo4aKOSPKTCG62PvHq313ZlXwucKiR jr9JmzN25iDw0zbeAaO1etYq2076Rva27zybfQlZ92+ii/8AV+xc/SGHUzwaaglnmF8ktWTfTYWt FzbkAFX1GL4vVPcX1baeFupjgAaGnmDYftO7lx2tdYAtv1rWtft1t+85x7FOp8FrqkB5j6GNn+JM cgbyuAf3Q3muh9msoPStZN8X6HIrel0YpeVfWpTz04nLWvfJlvmaxpsOYAHwb3oYoyB1GkX8+d/I uP3VdmkwinGWeufOXmxEDLtJ4i/t8usVq7G4KXXD6CKJ/s9NKekcDwBJsOV7/qrWMYfshXe/l3kP tFq7nK7d9iJT4NiFQ1phpXgNBLSRl8Nlj2DIu5wqjogfpOujY4dYwQ2e79o+y3mf3lxE2LYvNka+ eZ1wSATZp8sp/cPYVeYd6GatkxCXYbiOM7Dz017QAeam0tfpr8yaW5Y58jHErI6nD3S9Fh+DvqZt rTM4uzX3ubvtuJ07VeU2DYtXAOxGtMERBHQQWGh3Hdbnc8Cr+loqahiEdNCyJvBotdSACdgXmWva 6+BebvfXAuo7SJR4bSUDLU8IaTtedXO5k6lS1tkO+wTqjeSuKU3J1bqWoarIaTsCzmtsAWC4naVF 5JnLxICdUcStUSm0G2fgAFgknaVhEogEWQ0nYFnLbaQEqgaotuqOJTMBsaEqDVERSQEREAREQBER AEREAREuAhIRYztG1w8VqZYxtkaO9KijN0XB1ZTN9qojH7QXJ2K0DfarIR+2FVzisWXVlaPCL5Ex FA+mcO3Vcbvum60lxykYwmMSzO3NYw3KKcW6Jln2e1Sq4vkWS41L52U7nU8TZJfstc7KD3rz7/SL EJXuZBhcsQBtmma4/wAIIPio0+JzWvX4lNC0/ZhiEY8XXK2jGOlRyXDH0H9Pa0ro+xbPbi8gLp62 lo2bwxuYjvP4KvecJLiJ8Rq8QkG1sbnO8QzRcaZ+FTguZhldWyg6dMC8HtBccvmp758YY1opcMp6 aM/ac4OLeYFviuyuiq4co/LMdBuWjn4NacOjFsNwBsQP25i1gPhc+S6zHEAzNWYrTUUfCJouO92n kqaorK0Py11fmd+hhmDL8g0F3mt6ITPlzQejocbdWeZ5Jv257OVdJO+nnR+svg0dhJKra5r2JH/K pXe1XYo/szOYfg1TIW1zGZaPCqWhj4zOFx3N081iZ+LMhzTVdDQs+0Gakd5/BUkjH1MptXT4kSdA 2NzmnvBDFZybWDfX4iUhBSxklnzZa1EzWuyV+Pdf9DStDSe7V3mtIoaZ7g6kwWoqX7pqs2t+91vJ aUdHjMUZEcNHQx7nFoBH7IuPNbTzRPdkqcbnqH7DDRtI/h1HiphJvDPlH5InFRdE653kqaWuijvU 11Dh0fCMZiP2jYeSh2oqg6DEsUf23aw/BpUWHBp82ekpZ2n9PWPY0nwBPjZdujFO9razH39I3/Bp Rdx7tb9wCiLlWiVM/wDjV9S8oQS8VfJ+9CcxtXTxfVU2H4ZCN7+sR3Cw81EfUUs7rSYjW4g73KYZ WeLbeZWr8OgrADFhNRMQcwnrJiz4kuHguMlFTwyWqsTjid+gpQXvPje/grd7S7q+emk+qIirOneb 5fdE6GGWBpkpsNoqFu+WoeHP7wNvio81fSv0nxeoqze3R0bcrL8Mw2eK2goYQ0eq4PLMBqJa6SzR yBuR4BcpoaXpHNqKymY8m5hoIA5/edT32Cl6Twxz/wDJ+hWOhXvVodKd8bXF1LSUNKQLmWqlD5Lc SB+K0nxClJayoxSqqy7ZHSt6OM8nf/ZdIMPjbZ1NhDRl1E+IS7O0DUjyXR07ZgY5MQkqTs6HD4bN 73a28Qobfnni+qJ7mlroRYq+mgGaCGioAdDNPeSTv/8A6uk9QySIvkdieIhv2YmmKPytceK3EIo7 zNo6OhP6etk6ST4/NC71r7dfiJ/UHQwjv0uPFRFOlW79v3q/8kJOFbldx+3sQmYo2GQxRx0+H3F8 kMJfI7le2vcVImYZY3Seo1dZYXzV0vRsP7P4gLoHCkJi6ajoSdsNHH0sp77fJavhzDpX0hLRr02J zaDtDNnwVopq+uffmyJSi3criHTYlU1DjCxkzQB+boY2hvIv1+S6Tl1I7OKWlp5SOpJVS9NKTwtf 4EqSJDUNytmqqse5SM6CEftHU9xXNrhBI6ON9NTSH2o6SMzzHm62neFaMXSlc8vVMSnFuqiuvycY HVtSxzqumllaNQ+eboou9tgfEFa9JWyXhoXRmPc2giytHN508CF3lYyMiSeKNhvpJiMvSOv2Rg28 CFtI6SePNJ6xNGN8zvVoR3DUjmCp0bqVz6cqDTWlWiOEYNM8CR1LHU7ywOqJz+HmFXYpBYet4tLG IIjmZJW2Lm9ojFwfAK1iJdHkgc90fuUMYij75Dt7iuEsMFTFJTtbH19Hikb0sh5yu0B/q6lxrxXH +fVEKbTbWvciP0r8Ww9tRSV7jQuFhNcU8Qsdbbzw1BXelidFTZIpppWgHM6Bggj73nU82qqwvD6O EmmpJ42iE5RBDeeSM77W9g37SFbytjjk+vLRJttUHp5OYjb1RzSKvq8+Xui8pUiop18vfEr2QwQu L3VL5nuBuKcZi4bwZHWDvC/koHq5qJWSUrJHC9g8EuLNbZS51hfYMpFu3jaTV0BeIxG6ok2hsv1h 7omdXxN1pUR1VY3oap4ja4WEchzPI/ViZ81lLRldG/hf1wfneddnKcO9O7jdySv5XFfLSxBrQ14M jNLROuWuvr1jow7dNQoLGsmewRwu0dbMw2Bcd4Oxh3W2b1fSYA6CHpZmZWnY6rdq6w2Bjdo8wukU GGyNaamollYdBCwXcddBlGjRc6Xv2ELknNuWisdi7z+EuJ22c4xhp3tbXcq+V7fCm/d5+mpHYhUM ip2PLg8Ho4faPF19jSNltAp7/RerpDGKqaGEEEhubVlthudg1N93DcrOpx6SiPqmFUENIXAN6QEP fyLr2DuZVZUTlsZqpZhJVPu7pAwyG/Ek9VtthAv3LFdmlOWnN3Lzpu2ey4m/9baJKMFSuC1ve9i6 +R3MOF0Aj9WlfPVNOs4JZE0EbLm999iN/KyoKzFHYz6R09DTRx01NC68ktM0iQgDQE6udc6bL7TZ WFVDNRYYZaane6UtyNkp2nrOI11dtFtRlHfx19H8AOGYZLU19YwV1bbLFG/M5jT7INtbbSdbdhU2 tnBSVm+Mtdy1ca6zllauSudW7l7vhS5Le9ZLa89BUy3uX3cQL6gby0a/vO8VkwyyUUDI2veA9jQR 1he+zZkB/ePFWNX9FUmHdGzpKp7SG3JDYmm4106viSQtcWxmrqqeOAFsMWdmWKJuW9iP2jzAHNdz 09GSUcI699a5uOeE1KcWsHLoqJepifC54qyldUSNidISAS8l1rXNvtacAG7QN62e3CMOq2Pc/wBf a9pa9rRkiz7gTv36EkqsrHF8Wdzg4CQF17WJvrfaL8y4rFS17m52hxkjs7QElo+IH7gW1pZyrNyl hR3XffBGVm01BbU455ouX49O14MFNTQPYLNyx6tZwN9SOeXZtVbU1lRWFpnmfLcdUONweQ1B5gO+ 8FMpMCxGseGMpnMaDcueA1oPha/IH7y9LQeiVJB16x/rDzq5v2Se3e7vJW0rfs1hesd17OGkmePp MOq8ReRTQukB0c77PedQe8u+6F6fD/Q+KMiSukMr7WyMuByvtI7NB2L1DGRRNDY2ANGgG5bZzu05 LhtvxC1ndC5FlBI5QUsVNE2OGJkTGiwa0WAXWzRtN+S1RcDq72y5tmA2N8VguJ3rCyATsCUSBhFt kO8gJZo3k8k0kDVFtmA2N8UznlySrAyHhbmmUDa7wWqJRg2u0bieaZzuAC1RNFAySTtKwiyATsCm 5Awi2yHfYc0sBtd4KNJArPpUn2aKqd+xb4p9JVB9nDKk8y0fNWKKmjL+43+pZ6odWV3rtcfZw14+ 9IE9ZxQ+zQwj7038lYomg/7n0+B9aH9i6/JXdJi5/wAClb/7CfklsXP26Vv7JKsUT6e9j6+yK5fJ XdDix21lOOUJ/FPVMRPtYgB92IKxRT9NbXzY/qJbFyXwV30fVn2sUnH3Wt/BPouQ+1iFU7vA+AVi ifSjlsf1NpqpyXwV30RGfaqap3/tI+CfQtLvdUO5zuPzViifShsH9Vbf3MgfQ1DviLvvOJWRg2HD /o4Se1t1ORPpw2Ij+ptv73zZFbhtE32aWEfsBc6mXDcPaHVBghB2ZrC/JdqutgoYhJUPyNJsNLkn gFWvxN1W9rqXCp5yPZklaGAfva+S3s7Ct+jdy6mcrWbxkzP0zDIbUWH1FSeLYsjfF1gsl2Mzi4ip KNnF5Mh8NB5rDm4xK28tRSUUfBgznxNh5Kvk+ic5bU4hVYhKNrGOLvFrNPFdUbOH7V6v4Rm5PWdK gUkbsuI45LK/9DE7J4BuqU/qrHZsOwOWR/6aZuTxLut5LtTuna3LhuBx07PfnIYOdhc/BKj1ljc2 I41FTM92ABvdc3+SvX9tevtH5IOj/pZzCZqqkoY94YMxHebDyUBzsKkdaSrrMTk92Muc3vDbN8UY 3DHvBp8Pq8Sk3PlBI5gv08FPvipZoKLD4gN/XdbyA808O7kvlg5wCrYzLQYPBRx+9O4A+Db/ABXK pkyuy4jjoa4/4NMA0n4nwXF78PkflnxCsxKT3ISct+BDLDxUmnjqo22oMIp6Jh+3OQDzsL/FS1S9 585VfQHCGKmc8PosFnqX7p6s283dbyUieStjZmq8Ro8Pj92IAu/eOnkuE80ecsrsaklfvgo228m3 d5rNPDldnoMEDXfp6x1ififFS9r6/MvZEHIMoZ3dSmr8VfxluGH96zfBSia6CHU0GFwj9twHkB5r lUTua7JXY01jv8vRs6x+J8LLWGnYXCSkwZ8jxsqK59vjd3kjvV+edFyQOd6Spd+cxDFX/q9WM+Fm lSAKmlh6kWH4VAN7us7w0A81pPUua7o6zF2xu/y9DHd3zJ7rLWKmBcJKXCC526or5Ne69z8FLwvw ztoujBoXU9U7WTEMUdwZ1I/EWaR4rr9dRxbMOwmHt67vkAfFay1OdxjqMVfI7fT4fH5Ei5HO4SOB 0N5oMNgpeNRXSZn/ADv4qXhR550XJMGmWKrOkeIYm7jIeji8NAR3FbmSSlAifU0OHNOyKmZnk7v/ AOLXO2sOU1VbiJ/R0jeji/eFvMrq4uw9mUDD8La7/wBkrvhr4qsn+3PL/wBQaimZOM8dBUVe/p8R kyM7mnZ4LV1WX/UuxAkDT1fDYb9xdrbyWeiFXq2lq8QP6Wtf0UX7v/1WpnuegFdmI09XwyK9uwu1 t5KqVcc+tOUSTBiFP9d6tS0I/T10nSS+F/mljWeyK6v7XfUQj4XHisOjFIRK6KlonHQS1cnTTHst f5lDG+rbmMVVWN9+qd0EI/Z3juKv/wCVc8a/7eRBhsjYbwMqYYSNtPhsXSOHN1vkFo+MQuEskMFM d01fL0snc2/wK2bKHDoYqh0oGnQ4bFlYOwvP4haDLTS2Hq1JIdzAaiocP65q6znHowbuBnaXPbU1 bR9uod6vCP2RqRzBWsb3Ss6KCR72D/Cw6IRxjnIfkQsStYy0s8TQb6TYlJmN/wBWMafBZkMlRHnk 6aaIfaqHerwD9kakcwVFLs/x6MGjckEpbG6GGb7TaZpqJ+950HeCtZA1krTKyOOXa01TjPMfuxjQ d3gt2XfFljdJJEPsUreghHN51Pce5YhcTdlIBrtbQMGv3pXbe6xV9+c8a8SDEzSWh9UCWnY6vksD 92Ju3vsViQjoby53RbAZ3erw9zB1jyK7Q0c5JfEwMJBJMA6SRwBsbyv0v2bVoI4I53ZJQ+dpIPQA zy//ACO6reRUaSwrn28riTzsODsw/EKmqoi2L1oAySPcaeIAbg32iO3fvVnDg7pIyX9LNEAXO/6a ADiTtPMLhiGD0eI41R4gJKltXR6NbBJ0r3cM9+q07dNmvBd5a2tq6jo6KJ804J64+tcwn9Y9VvIa Ln1vTVNnzRep02crRqlndteHUtYqGjpISamrbFDcZmUo6JpuNpedXdxXKXFfVYcmE0UFJG616mfq 3PZfVxPGy1pvRutjtVV87Y32JMj3ZnN73aNHIHmsE0MN5Y5HzEAZpWHTtBlftH3dQq6KtPFLu7F7 tXZxFYwfdWlLb8LX58ivmY97c9VUSySOFhJKTHf7rdXu5aAqPT4XiddDIyihc2nJuc4McZvvaL6j TUEm3mp7a2NzM0VC2CJ1gXyvN5T2ud1nA8ANd/Bc8Tq56uENqKl7A0ZmDKWBvaIx1jw61gruE5xp ZLQiub8vveaxtdCX5nek+Sz0My0GG4dlZVV/rDojl6CFgcLW0B+yDmJIJ+a1pq+mpZ2PdBDWVA6z pZpBaJu62gaNdOr4a2EGiopqqQ2ie9zCPqWxZy3S9raNbtuLnTZbamPRPwajdWV9ZHTSuNmB0meS O+gOg0btNgBr5ZydnCOlaSu1L7Lbndo4uUnZ4vW87MW8ulxzF6r0s9KaXDpJvyGldnk9WBGtrgbL nXgO5XTwZanost2R3fI3K0i/6wvYces4laeiWEYRhlHJW1VVPXT1YEuSNuXqHUA7wN+tgbqwhxQ5 5JqamhgY5/1IDBdltLBxBGuujQ7buVeyQlRUjfJ12Kiw9jOc41lOOEVRed3yziKGrraimbFGTmf1 ZHEgAAX0db+FoHau1dhUcNPmmrafoulY2XIbkOvqHDW9hvcSpnquK45icbKmQxRtjLrPZlaAbDRo N/E93G0qsCo6CkhkAMszZ4gJH7uuNg2DuCtb9opG0rK/Yr9W37E2SpaWKze2V82FU01DLJS0lRIG Rn6+oOS++7RtGzZoCvT0tJSswwRU8EcccjNQ1u24UqWPpIHstoWkWUbB8z8Jp8xF2synmNFxW1s5 2nedzW3Z/JnH9Gq1P1X2MYTK6TDo2vN3x3jdzabfJTVAow2DFKynJ0daZtu3Q+Y81Y3aNjfFZWb7 tNhHaF+Y2td/O81WcpO5ZzndpyWpJO0rS8xNsoG1wTqjiVqiUBtm4ABYLidpWFtkdwSiQNUW2XiQ E6o3kppIGqLa7Rsb4pnO6wSr2AwGk7AVnJxIHesEk7SsJeDazRtd4BLtG7xWqJQG2bgAFguJ3lYR NFAIllnI7gVNUgYREQgIiIAiIgCIiAIiIAiIgCLlU1EdJSy1EzssUTS9x4ALwGD/APFWk9IcaGFY ZRls7yRG+ofla63K/gia0lGuIPXzV9bJK6Klwt78pt0kzgxh5bT5LjLHiTml1ZicFHHvELRcftO/ Bazx1YYX4jjMdNHvbCAzzN/kocf0SXg01DU4lKNj3gvHc52ngu+EVS5clXq7ipj/AJM52gqcVk/a kbf+EKfG7E3MDaXDqeijGwzOBI/Zbp5rIOLyN6kdJQR8Xdd3hoB5qDMcPzltZilTXSjbFCT/AAs+ at4rseb9KIHSpMLHZcSxx73H/BpzkvyA63msU7YWuzYbgb3v/T1AyX5l3W8l1phOxuXDcFipmH/E nIb32Fz42WlS4sNsTxwMJ/waYBt/i7wU1/b0+0fdg6zurmx5q7FKahi92EC4/ad+Chtbh0rrxUdZ iknvS3LOYzWb4LpTsgD8+H4LLM/dPVHL5uu7yXWokqY23r8Wp6Jh2RwAZuVzt8EV1yu6dFV9QdCc SbFcuosNhA++4DyA81BJoJ3daauxaTgy/Rnws3xW0cdJI8OpcMqa+QbJqokNB49b5BSJ5auJgNZi NJh0Z+xCAXcgT+CK50Vz5elZehBlja2GK0FNRYZCN7+s4dwsB4qI59JUOtJV1uKP9yC4j5XbYeJW Y4qWZ4dT4dVYhJ+lqiQwHj1vkF2nmqIWhtZiVNQMOyKmAc89gJ2+ClXO7Hr7y9AZYyqp4j0FLQ4X DtLpLOd4Cw81GL6aqdZ09dir/di6sfiLNPeSto4IpXCSmwuereNRPXOIaOQdqO4Leeoe13RVeKtj P+WoY7u5bz4WUrG7Hr7vqgbfX0cOjcPwmDts53yAPiuGWGrNxFXYo73pTki8DYEcgV0ip3NPS02G MiP+Zr5Lu5ganxstHTMqXZJK6qr3bOhoW5I+WYbO9ylbVnlXrJA3kmkpmiKWspMPbugpWZ5O7T5L WOk6Y9LFh0kxGvrGIyWA7Q03I8AujY30UWctocJidvfZ8rv5+K1MbakZm01ViB/SVrujiH7PzDVm 5/259P8AJkmX1IlPROxGWoI0MGHR5W8i7d4hYLTQNz9FRYYHaZ53dLM7n295WPWLnoX12zT1bDYr nkXa256LGX1P60Q0mHB2nTVT+lmd2bdveUUaXZ9vRg1MfrQuYKuuHv1buii/d3+BQVBcOhZVFwGn q+GxWA7C/d4hOj9Z6/q9TXb+lrXdFEP2N/gsCXph0YqpagDToMOZkjHYX/gQr+2fL/iQa9WjfmyU tC932pD087v5+KzLEZG9NPC+Ro16bEpMrB2iMfgFgPFK8xxmnonu2x0zOnnd2k208CtZGNhcJpY4 4XH2Zq+TpZCf1WA6dx7lZVrX+c+bBtmdUts11TVsG6EerwDv2kciVpG6wMUD2t4w4dGDr+tIdPgu 0dHUYgRlpp6oe/WHo4+6Mbe8d6shgoZFmxKvtE0fmovqowO7XxKrK1hC5vy+32QoUoLIJi1nRQTn aIwaioPMnZ33Clw4VWVUgkFOGG+ktY7pXjk0aN8e5TI8SoKZnR4RRGcA6OjaGxj9rYe66hy4hX15 LRM9zb2MVCOqOwyu08LFRpWjvSpvfx8i461FDQ0uV+JVYmkuC1sxz34gMGl+V1xmxBsWR8UAjaNG y1rst9bjLGNpHIFa0lG10+Q1EVOXEh/q4MslxufIdh/q6lRVWE0Uh9SpX1dTaznjruvwc86DxUPY 6yfJfHqiSG6KuxHV7J522vecGOO3ZGOs7k5KqgNNE1tVURAXyiN7sjLfqxt1dyJXSXFq+ucY4nlr d8dEA633pD1Ry2rkcLq4WGZzBDc2eWu69uLpH625DRXTlGik1Hdn2VCCtxmgjrcJfR+vVFO54tGW t6Juz7MY6x13Hx4z6HFKrDMLpcPiLWyRxhpllbmlk/W6NuveSFvFh9OKeSWbEYqZj2XzwEnNwvKd Xd1ivOYDUVvo9DVQ1OWtkqKhzoHyXb1TpqLAu42tbhqsZxs/qaWi5Pbq+K8zSCnLuJlpU1D5p2tq HvlnceqyT619+yNvVb2EqTF6O1zpDW4hUsp2NF2dK8Oc3t91p5BcYaqWmlLow2OVws0dHYtF79SN vWA43I7VgiprqjL9bPMDsNpHNPL2GHncrbQtZ3ukY7Mft5X0LOcbNUhe9vwd2RYcw9PLXOEejXPY Dmdykdq4fdsuMuIU0hZFh9HFHAes4yNL3yu45dpA7beS5vw+tfU5W9GzKcsz3yatv9kvOovpo0Da OKnHCaKkaKZ9UJZzYmlpoyRbtANzzcbKknZ2kqOTaXXls3kqtlGv7n0+7+5BqsbrmUssgqnM6Nrr vAaS3nazBy6xXzN9VH6TeltDRyNnbT5swYwl7jYXte3EcNLnZZfZZcEonwxUroZJJ5xY9MQeiZvs BoOGnFUdBF6J+i/pFUAVUUc9M5rTGYfzWfYS+17ajW9hcX2hcXareE5aEI0Sx1V3Gtm3ZWTrjL0+ /wA7Ts/Aa00RfI0Qtc4NY17RcuJtfKNBrrc5ivWYbgVFhsbOjjBkDQDI85ncr7h2LxMXplUYv6au oXzw0tBTVfRRdLC4uleBYjNfKL65eWxfRlnLtVpbSbrRYXFJJRs4w8/jO8gUuV+M1smpDGsjHmfm mNOHqUdmj8/F/GFjCWmQVcwBPSTu8ur8lnGmkULL2H18X8YXK6fSbe86Vd2qK2UXKhYFxItfRVuE dWCeL9HO8eJv81Z2aNrvBV1EWx4pXx2OrmyDvFvktJNKSaMLO+zmuD609zWs+oxOjqNziYXd+o8x 5qxsSoeLtMmHSOY0Z47SNtxab/JSoZ+mgZI112uaCEjVSa8xPvWUZbKr39zpkPC3NMo3uC1RaUZg bdUcSmYbmhapZKbQbZ3cbclrclZyu4FZyHeQO9RWKBqi2s3e7wCdXtKmoNUW2YbmhM57B3JV7AYA J2BZyHlzWC4naSsJeDbKN7glm8SVqiUe0G12+74lM3AALVE0UDbO7itblESiQCIikgIiIAiIgCIi AIiIAiLV72xsL3uDWgXJJsAgPO+muImmwGoo6WSndiNUwxwU8zwOlvoQOJsvm3o96O+jfonURVmP V01Hi5g6Y07ST0YJtcEDU9m0C/C6ug+m9KPS+Wp9IaE0cWGv/I5w+wm10+9x0UDGKCTEvTmppcEo i8VGEuicahpb7TrZ7u10011va3aKqEn+bTB3E11Fji2OuwqVtfhlDBV0rnxsgdKxz5aguOoD3Hws HcV7a+LSxB0s1Lh8ZFyG9dw7zYDwK8RJ6J+kUdThUtbPhvq2FwNjpx0paWOAAL9WkE6acNN+q9Qz 6KkcCyGqxabbc3e2/YT1Qu6z0ptyfz1dxRh30S99pJ6rFpd7W3e3vA6oU2L6R6MNpKCmw+Lc6Ygk fst081sDijo+pHSYdDba7ruty0A81AecOkeWz1dXisu9kdy2/Ahtm+K18V2PX0pEG87qTpCyuxee rl3wU1x5M18Su1MyZgP0dg0VM07ZaghpPbYXJ77LeIV7Yw2koaXDodzpbFw/ZGnmokr6KSQtqcRq sRlG2GnvlB4EN+ZUq+7Hr0VFzYN6mRgfkxHGnvf/AJekblJ7hd3mtqaItObDsGbGTtqKt1ifiT32 XSFlXHHajw+lw6H35rF37o/FRZH0kzy2euq8Tl/RU9wwHh1dPEor7lnyVFzZB0qJgH5K/GHOf/l6 Jlj5Xcs08L2HPQYQyG//AFFY7rHt3k99lvG2rghPQUtHhcA1zSWc7wGnmVGJpKp2r63F5ODdIvk0 +alYXYZ2UXNsG000b3mOrxWapeNtPQtIA/duR4rpDDNA0vpMOpqBh1M1UQ557SBt8Vl76imhAkmo sJg2BrLOf8gD3FcGRQ1Ds8NDU4g/9NWOyxg8bH5BNW7p7L1AdJBVOs+prMUf7lOMkXK4sPEldCZq OGxNBhMJ2AWe8/AA+KxNUOa7oqrEmxn/ACtBHd3InU94ssw0747zU9BDSC2tVXPzPtxte/iQpdEr 8M8FyTBybDHVOzR0dViLv0ta7JHf7p+Iauz5cp6KoxEBw09Uw6O7h2E6nv0WPqar/ErMVdwj+rgH foCO8rL5XUzRDJVU1A37NNRR55D5fJZuTk6Z93/xRIEZpQahtJTUDd9RXSdJJ8de8rQtFcb5KzEj 78x6KEd2lx3FZEXRflLaSOC3/V4lJmeO0Nv8wsH8s2et4kd5d9TTj4Zh+8iuvzzr/suANTOR+T+t NZl09Ww2O5HYXbuei1t6o7pOjpqEu06Sod007uzbt7ytulA/J/WQCNPVcMjvbsL93ktmwvpTmy02 G5wes89NUPt8/FXqldn78nxIObojM3pZIZJ2jXpsRf0cY7Qz+Q5o0urOpG6orhubTjoYB+1tI7zy UxlBFJ9YKeWpmv1J643Gza1nHss3euj5avo8/WyjrB0rugiaRodPa7dbjyVXaal8Z6cCaGkGFThv RyVENFHtMFG3ra8XWv32C36TB8KkywxiSrO3Qyyu57T3lQQ9tUMjJZ6uMXs2lb0MAG7rXue4nkt6 epMX1dDA3R35uijBAO8OkdofIqHGT8T9l56+fMFkJcZrh9VEyiiP25us+33RoPFcKiiwyjLZcTrD Uy30Ezs1z+qwaX5BbRUmIVIEdRWspY2tv0cT88ljxefw71yL8GoJXMpWSVVVsf0fXeexzjs7yFlG 50j/AMV6tknKpxNoYDHSshjuMstabXI2Fse2/guLKWvxM/m5Z2O+1U/VRd0Y1P7XiuTZyKgiGFjJ xplhb0841v1nu0b3qe6lxg0zpHF8Md82Rrw+Uk/rOOVvIdy3aVnhRPfn0dCuJzqsNp6SIfSNfG4W s2M6MvwEY9rvJUR8lCJW9NDK6mJs2OodkBHBsTRd3JwW9LRRSVJvWRRXuHSQkzSabnSEWby8F1fN hNOyQUMMlS4tIknz5W8zIdfAqU9VW3uuX25gy/HKiKJkFPDFS3HVJZd7vuxjXxKiTUtdMWTVEU7y 49V0zekdfsYOozme9dabE2UMT30tLTtDiPrnXDQe17tX8wFxqauuqyDPJK8PBytc1zGEb8sY6z+R 0V4QcX3Ypb9efPgCRFg07yZ6maOnyjNnleJJQP4WdwKoDHPH6V9JFV58Ecy005FnX3ZZCbuJPDQD ZqrkYRXzwCWSFwjYOqJst/2Y7ho7CSSq3GYMWpsNNbg8VNXzmQR3zulfbYbEABp5WAtvWVtKOjpS nh/aSq6i1fiVJTw9BRYfHH0g1dMC4v7Qz2nczZRhi2KlhosOt0hNixjGl0Y7uq0DcCSVYtwSCmp2 vqHPdLLa1PGcuc22Od7Tra3JNrbldYZh8OHU+VkTA92ri0WHIDcAsLXtFlTRgqvW399ZtZw0V9Sf ktv2KSg9GJLmSqlMZdq4RuJe6+27zr4WV/T0dNh9OehhZFG0XJAt3kqVnO7Tkq2vcauojoWklp68 33eHf8Lrmtbe0caatSJs4fUnWT3tm+HROmL66XR03sA/ZZuHz7183r8Brcf9LfS2gp5Io4pX0vSS SNN2gC928dh0332i2v1UCwAA0UTEnGnoZXxtAlfZjTba46Bc8oqMe88C1XbWlFruPGSej2KY5XU0 snqjKOnxBtQyZpIe5kYIDctt53337Ny97LLkie7QANJWlLTCmpYoQQAxoG1cMWcI8KqSHdYsIbbi diJRhCrJf5ttRYN0XDBGuDhwwqAm93jOeZ1XPGv7Cz/zxfxhTqdjIqaNgBs1oCh40R6iyzR+fi/j CSVLKlNRpZy0+1KW2XuT1XgFnpAbD87B/Cf/ALKyznsHcq2tcWYrQSEnrF0fiL/JWtK0T3oz7Pe3 Han6V9ixdGXNLTaxFtVAwfq0bqdzhmge6O3YDp5WU5V0P1GNzx7GzxiQcxofkkk1JPyFl3rOcfPl 9mWdm8SUu33fErVLFaUMDbNwACZ3cVjK7gVnIezxUd0GtzxRbZRvcEs33vJTVA1RbdXtKXb7vild wNUW2bgAmd3HwSrBgNJ2ArOR3CywXE7SVhLwbZeJHimUe8O5aolHtBt1OJKXbwPitUSgNsw3NCZz 2eC1RNFAIiKSAiIgCIiAIiIAiIgC8H/xCxqIerejktLUuixLquqYTbotfPtHBeqx7GafAMGqMSqm vdDCLkMFybmwsvCehsNfPiFZjtMamup64l0LaohjItdl9Tps0FtE0JTeigXno/Qw4PhsNHheGTVT 2CxqqlojzcydfJWc7K3KZa/Eqeij3iEC4/ad+ASoFWGZ8RxaGji3shAHdmP8lGhFB0gfQ4bUV0w2 TTA2H7T93JeglW9fPV3FTWMYY6QOpaGpxOYbJJAXDmHO08FOecUdGXSzUuHQjbl67rczYDwK1mOI 9GXVdbTYdCNoisXD9o6eShsGHSPDqekqsUm3SSXLL8QXaeCnxX49erpEGP8Alkr9G1eLy8TdzL+T Apt8SEWykwyADf13W8gPNYldiAiLqmqpMMgG0R2c4d50HgVDY2hleHQUlViku6Sa+QHiC7TwU+Jb evxEA/R879TWYxLwGsfyYpZNfHDqaPC6cD7zgPIDzWJ5KyOK9ZXUuGw+5FYu8Tp5KNFHTSSB9Jh1 RXyjZPVkhoPZm+QTFZfxH1INQKGofdsdZjEnvP8AzfnZvgpMslXDEPWKqjwuDYGxWc/xOnkVrUzS ss2vxSOmB2U9I27j2X1J7gFrTw2d0lBhWV3+arndY+N3eNlLvVXnnRckwc44oJnh9Nh9TiEg1E9Y 4tYDxGbZ3BdKieRhEdbijISdlNRMu8/EnuAWksscrzHU4jPWyDQ09E0taDwJGo7yujRNSQl0cNHh MG0vlIc/vtoD3lS9+eftEGsEDmEy0eGMh01qq593Ecd5PeQubpIqp2WSrqsSf+ipBkiHZcadxKyy GKsfeKnq8Uf+kqDkiHbY2HeAV3lf0Z6GqxEMcP8ApMOZd3InU9+irKaT39fd+hJgNko4gJJKLCIT sZGA+V3LdfuKw2BkhEsNBLUuGoqMReWt5hp1HgFs2OSmBnhpKbD2HbUVr88h56/ErPqZqXFz4anE H3ILqp3RQg/dtqO2xWLlW9vPP1l5A5OmFS/JLWVFc4aer0DcjB2F2795CXUQyZ6XC2v2RwN6Wd/l t7ipraaokZlkme+PLpT0TejbwIL+IPaFwlYMPeWtkpKBjiAOib0s0v8APxUqSfdWfKn+r4g4CLJ+ UikDLa+t4pJcjtazdy0WoHr5/wCrxM//AA04/wD2HismLbUmltl19bxSTZ2hm7yVlBTRVQc6prJa prdrWtyRWO2wGjhzJUuejfnPmuAOcOG1DmCOerjpYgB+T0Tcth2u294suwfhOFOcyKEvqCLuaxpf I7tNrnvK6TVcULWw0dDLPlbdoYMrLH9Y2FlCj9YrnOjkr4KZkdmugous9o4F34ALJaUr5Oi5dFV8 +ZJ0lr8QmtYU+GxvdlDp3B0jjwDQdvf3LT1bCoWMq8SqZKhx1Dqo2sexhtY9yzIcHw13RQOe+qJB cIh0kruZNzbtK5Q0NVJL00VEylzXtJNeabuJNm+JCuqJVXdXKvq/Ug7mqmrTbD8MJZcES1ILWC2w hu2/cOai1tLWRFzqyYSDLcmSQQwDsyi5PI3CkCpxOV0dKZ4qS92h872ulfbbZrdP62LlVUuG0MrH 1NY6oqjexeOkkP3GjQdwUw7sqLpVvn8cgcoYKSSn6StrXOp2HKWRt6GFo4i+rh3kLaevomU4bQ0L RTsv9ZKeiht/uHcQucMmHU8sctXDNNUG5a2ocHydhaxtwPKyzW189RUMtSR0z2C7B0fSzgHgBo3m brTRblenTjRdMeIM0M9d0dqCnBYG2u2LoYR2gauJ8j2LnVU1fUuHrb+kaQDmnf0UIvuyA5ncnKYR jclKXfWQMa0CwLTK/wCDGnxUSnwuVwmlkqYqZzR1z0ueU6Xs559kdgHJIyim5VS6vPDzBmsw6jpI Gsqq9kk59iHoy5g5Rt2991rA/Co7OqYqmpqgbsgks4tG45W9VvM2WlLTYc5sksmICKAAZzFcZz2y nV/MWUqmw+irJXCClqRSC1mvtHG87zb2nd+hUuSSpJv08tWdZBDjxGNlY6obRQvLbnKT0jmc5Ccr B+qLroKrFcXdaK5j/wC19XGP27ZnfsgBeh+jKHQGljLRbKwi7W22WGwKWDlFmgAdgWEu0QxjC/eW oyojwR9QGnEqh9Vb/CGkY7t/fdTqvpKHDZpKWnD3xRksiBDcxA0Ck3cd5TK47iVyztJyxZKR5v0Q xGox+gditfSPpZy4xsjeCMrRw5n4L0vV4krztD6Tx1fpXU4B6lNFJCzpBK4DK4Xt3L0WXi4LGFEr mXnJydWc554qaB8zxZrBc3UbDo3sifUStAmnOdwP2RuHcFzqA2txBlKHXhhtJKRvP2W/PuHFWPUH EqFSUq7DWX5dno63e+Gr55DO7iqyqPrOK00G1sQMz+ewfPwVmXNA9nxKrsMd00tVWZR9bJlZ91un xue9TO9qKQse6pT2Lq7vSpPVfi4LoIYQNZJmDwNz8FZZyq2tcZcUoIrk5S6TwFvmlrXRoOzfqJ7K vkqljkcNLWVfjTSKFtyPz8W/9cKeq7Gv7C3/AM0f8YS1roMdl/WjxRZhot7QVdi4ayKnmufq52Hx Nvmp42KDjDC7CqggatbnHMaparuO8jszpbR4lhdvA+KrsScIaijqg0AMkyOPY7T42U2G8kLHAEgt BXHEaZ1Rh80YFnFpLTwI2JNJxFi9G1VcMH53ErOezwWM7uJXGik9ZooZgR12A7V3yj3grJxaqjKU XFuL1GLnisLazfeSzOJ8FaqINUW3U4HxS7fdSu4GqLbMPdCZzwHglXsBqs2PBZzu4rGZ3EpeBkdw KzkK1ueKJeDbIeI8Uyj3gtUSj2g2s33vJOpxK1RKbwbXbwPil2+6tUTRBgtkF7DMN1ljNa9xa20r v/Wosm3/APq5++sGV0XqZxuL237bLK6GNrr3bt2nYtTCNrXW0sBuCt9WSxRHeWo1RZMcg4EAd5Wv WHtNI0uTuClW8Ndw01rMosBwNu3YsrVSUr0yyaeARF5r0xxuTDsMdSYfWQRYxUAClZKQMxvuv896 N0VSTzWM4hWelvpPHR+j2JxOioH5a2klBDZNdd2o3L1DoJaama2txOChp2iwhpmhgA4XPysqTAcE lw6h9exqrp6CuqBep9Xa1jnn9Z3HlZXFP6o2TNhuFTVUv+YnuB+87UjlddXZ7PRjpPXu93cirZin 9SEmfDsLnrJf081wP3n625XUic1wjL6/Eqegh3thtcftO/BKg1gjz4hicFDF7kFr8sx/AKNAKTpA /D8MmrJt1RUXA/edrbkF0Y349eru5IgxCKF0gdRYdUYhMNk898o7czt3JSah9Y2PNXYjT4fD7kNi 7lmP4LFS+oYwHEcUho4zsip7XPZc7e4BcadkWfPh2FSTSf5mrJb5uu7yU43/AH6u7kgawspXSB9F hs9bLuqKkkAd7tfALtUyTsA+kcVipGnZBTDrHsudT3ALWpkLSG4li2QnZTUYsT4Xce6yU0cjLuw7 CmU4O2oqz1j221J77I9rz5v2RBrTxtzdJh+Eue//ADVa4j43d5BYqJWl/R1+KySyf5WhaR8Lu77h ayyU8shZVV9RiEo2wUoIYDwNtn7RXYCppoOpHR4RTDe6zn/gPNTrq887+SBiGOeFhdR0FPh8Z1M1 SQXntsNveVwJpqp1nPq8Xk91nViHwae+5WWRwVMgdDS1WKy/pag5YgeIvp3tCto8IxGpb+V1Ypor fmaVtu4uPysqTtY2d83R9feXoSlUrpJJ6eNrJ6mlwyI6NhpwHyHsBI8rLNNROkeJqXDXyOGoqq9x B7gbnusFf0mEUlC69PAxrz7Ujus9w7SdVMc1t7kXN7i+tlxT7dqs1nO1sto7Sj+j5ZwPW6qeoGn1 VOOiisd973I7zyXeCj9Ta3+z0kI2siaLk306x48r67VKle0VDWGrtIxpe6FgF3NOguNT4b/BDFTx sLswjcGWMjjdwaOJPzWX1JNX4ZzgTQyykpYndIWjMAR0j9XWOtrlZZU09WxhieyVh1a5vWGnbsXC WggnLn5Wyl1nNMri9rSNhA2DuUCanq2MzPfVVTmu/Nw2gjB47b27yrRhGd7lfnOoguzHm01twJsq Ovl9UJaKinog95NoY+klk7R29xVhR1XSv6KR9MyoaLyxMkzkcNdPgoWLztpjHGyuZTZrnJFDnld9 0fyKtYxanovPR+geBFoKPpatkzsPlkG3p66Xr82t3eSt6uaalpWkOpm29t7zla0cRt8PNRMMpY3N ZO+lqjIHG0lU/M+x3jba+mmi41lNNUVz2xYfFe4PS1cmZotvay/4LWTU7Skncs63nYRgiLGWYlMP WKmqrobnN0LeigaOO27h3lTJpqaKJlLQ4bJJazmiIZI7bru0BHZqu1TNU0NGZRVUpzWu6UhjGDiL DXvPeoUDaerp31VfickrACCHNMUNvun2hzJWldJaWpbK+iS9gdqWhrYC2X8mpWXLuipmgN/acdT3 ALiJp8Qn6KfE2xx3IMdJd1ux0ltPJc74fWTFzzVvw9jdrrRwN+BcPELeV1NiDY4KHDJJadh9pzjF ERy+14EK1HWrV+2iu56+pBxkbhsZdT0L53vz/WGlAuR+vId/eCujJ8Mhjlgw+ifUSu9t0Tjf9qTj 33XXpZ5qWSjpcKjdELguliLIwOGU6u8LFZp/pZh6GmjjAc0HPIwMYwfqsHW7iQpbuvfOXrT0xBwo K2dkshpsPgllkN/ydlmA7LukOju4XWJm4vVzdfOXB1skZ6GNp7Xe07u0WY4MUbWEesZHk5OmnkFj 2MjabeOvNdDgNY6szuqm3GvrMhzyfsttlb4FHKzjKtV1efUXnGvoqtzWNra6Fz3OyiOSTJH+6NX8 iVId6Nl8DQ+rZJKLWD47xsHYwWHIm6saTB6Skf0uss52yyEuce87OSnWbxPgsZdpkqKD6E6JW0uC UdO9sspfUzjZJLrbkNg7grIZBsBTqdpS7fdPiueU5TdZNsmgzD3Qmc7gPBMw90Jn4AeCrTcSM7uK xqeKznPZ4JmdxKU3A8/jfpFhno7XUjayJ7ZK14jbKyO4B3XKuKuf1WkdMQTp1RvcTsHeVCxwYVDS DEMXjjdDSHpGySMzZDxHauGH4hTekUkVZRydLQRDMx1rBz/5DzPYqSlJXJ3s1sopussFeyyoKR1P T/WEGWQ55Dfa4/1ZSso3uC1RXUaKhSc3OTkyNicvq9BI5jh0jhkZ946BdaWCOmpIoWk2Y0DYoVV+ UYpTU+1sd5n/AAHxv3KxVIqsm67jWfdsox23+yzvNupwKrgWyekDtNIYB/qP8lPVdQfWYhXy/wDc DByAH4lJq9LeLG6M5bvVpFnmHuhV2NO/IG6D89Hu/XCnqvxr+wN/80f8QS1itBjsv60OKLEPNlzq AZaaVhJs5pC3GxCLiy00VQxTo6kPCZDJhVMSesGAHmFMOosVXYOctLLEdscz291yR5KxVbPwI17Q qW0qbSuwo9GKmlO2GU25HUfFWKrj9RjoP2aiK3e0/gfJWKWdypsJ7RfJT2qvz1qERFc5wiIgCIiA IiIAiIgCIiAIiIAiIgOo/qzk28fisX7R4Jp2eCxoWNrdh8E5rXTs81nw81VoGwKytb8T8VlVaALG km4147FqadmmW4sNANi3BWVm4LEq4Reo4OhewXzggC5JXzuLBan0o9NKiXGMPaabDyDR1TAWknbb bY2XrvSLEYGRDDnuqA+psxrqdoLgSQLjle/JXNBTOpKKKndK+ZzG2MjwMzudlXSnF4hQo7medko4 sPqA2kwqSqnIv08rrgc3O18Fip9bbHnxLE4aKL9HBYHlmPyAXqyxpOo14qLJhtJLUNnfAx0rRYPL bm3NdkPxB176rv19biNFnlqcU3SZ8NwuWql/zFSSB+87XwC61TpmtH0ni0dMw7IKYWJ7LnU91leV 2FOq2sY2qmhYPaERAzDhx8CoL8HdQtBw2jgdM7R0kziXcydb+K6odusZ3t0e/wCXcvJEXorqZjWu LsMwglx21NYS0nxu4961qXsz5MRxV8j/APK0YI+F3easBg9TVXdiFdJI39HCejZ5anxW/wBFVsDu hw2CjpYd8hGZ37unjda/1NjXxLO938kEq4ECnZURsPqOHQUER1M1TYuPblG3vIUdzqSoeWyTVWLy /o4tIh2G1m+JV5H6NQyOD8QqJax/CU9X90aeSt4aSGFobHG1oGwAWWM+32UXWN7zrd/oSoM85BQ4 pOwRxiDDoNgbC0OfbmdB4FT6X0co4pBLMHTzDXpJnZyOV9ncrm1tmiG3Gy4p9utZXRuW4uoo0Yxk YsxoCEra1+3uWp4BcyvdWSak8FzIvma8tcDsHYulrLR7GTxOZc2cLEtJB8RsWsWQRHTvhjllqYQ1 rTZvQ5nuLeQF7rIhpJZG1LYmtmc2we5ln279VmZj6WlYIHkMjN352ukc5vAa3v4rnJDHXRMqoImN nA+rkmgN29xsV0JrFXEEWR9ZRuEbWy1Ivm6aaVsbGjhoL+Skh8GIU3SxOimLbjK2QlhO8G21GCLE qd0M8QkLD1ukpy1pPEA7Vwounjr5I5qmV7gNI2U2SMDnvPetG009TXHPoQQ6KobTz+pl9NE8n8zR wl3R6/ada3iAu2LSyB9mVb2MaBmZTwZ5bnZrrYd3eu9fO+Crh6P1x7ztighGV3Nx2eIWuLSHoI2g 17Xv+xTs6zuwnYOdwtU6zjKmOdmdoNYgKfB3OLa+In3vrJAeO9RcMoyKn1mXDpuyepkzSnk0aNHh yUqrPQYXFE04jG52gbGM8nIk3tzv3rWfLTYSxg+kY3v2Bv1kl+BJuApjJ0dP3Pfn1IODqGaqxF8r MOjY5p0lqpM9vusB08QulRFW11QyMUFLGITcS1FnHm1oPzC5vpaaioRJHBXRVM2hc0dJKewu1A+C 1lpqajo2mKCvZVT6FzLPlPYXG4HitKttU4K7/wBvsDrNV1z5m0jH0tJndlBmc0uP3Wj5nuWXuro5 o6CPE6drnC/SPIMjuNmgADmon/Lqc9FS01TLVkWlYx2Z/J7zs8VYUWFU7aFzJaPoJJPbMcpLzzfo bqJKMFWnRc739gQOjqIaqSmjxUC9i9+cyzOvvDbWb4EKT/8Aj+WYOhrnRhw+sktmld2ZjsHYBysr OloqSijyU9MGDabbSeJUi7fc81lLtEq9z0RNCJSYZRUIPQt6zvae67nO5k6lSrM4nwWczfc80zN9 wLBylJ1dehI+r/WWLs4HxTMPcCZh7gSnEGczPdPisZm7mBM49wLOf9Vqim7qDGYe4FnpP1W+CdJ+ q3wTpP1W+CU3AxnPAeCz0juzwWM54DwTOezwU6O4HGqibWUz4Ji7o3izsri0+I2KtwI4NT0zsNwe SDo6Q5HRRuuWHtVxnPAeCosOwLC8HxqsrYXBtXXkF7SQNB7oCJUeALtEUTEpzT0Er2e2RlYOLjoP NWk6KrLQg5yUVrOOG/XTVVYf8R+Rn3W6fG/irFcaSAU1JFC3YxoC7KIKkby1tJSm2sNXBYAmwJ4K vwcXo3ynbJK93dc28lKq5BDSTSH7LCfJcsMjMWGUzDtEYvzUO+a4F43WEnta9yWq/Gv7AP8AzR/x BWCr8a/sA/8ALH/EEtfAyOy/rQ4osBsCINgRXMSuoOpiGIRcZA8ciB+CsVXN+rx+QfpYAf3SfxVi qWeDW9m/aL5J7UvQr8WHRxwVI2wStceR0PkVYA3AI3rjVwiopJYXbHsIXLDJjPh0L3e2G5XfeGhU K6b3h96xT2OnO9e5LREWhzhERAEREAREQBERAEREAREQBERAb5h77lnP+s5c0VdBE1N84/W8Uz8/ FaImggb9J2eaZ+wLRE0EDbOeAVZ6QY43AMEqcSlifKyFtyyMXJ1srFfOKnEn+lvppFDg2IyNjwxz hVUr2HLKNhtuPDVRKKSuQLL0QhZWzP8ASF8k1WawdJDDJTtaYQTr1tLkfDjovfBxIvqFxhaI42sa wMaBo0bu4LLnPAGUAm+820WLVaIk7B54rObeq2pxCnoS19VVsaTcBg2u4abSVG+lK2q/sVC5jD/i 1JyDubt8bKV2aUlVYDSLvPZQ6jFqWmeI3SZ5TsZG0udbjYbB2qjmqY+l6OrxCarnBB9Wo2kAH9nU d5sstNZHBaGGlwmmaPafZzwOQ0HiVtHscf3P2+/QjSLKSvqns6R0UVHGBfPUOBcNdeqNNm+/84se MZg5lC2or3E36QANYOzNsI5XKrY20s8meCnqMXmGvTTm0QPEXsP3Qt6qZ4IZiGJNivspaIHMe8an uAXQuyWeDWeF79CjvLh2NtpIWmvkijqHbIonF5PIWufBTo8QidTNmfeNhF+uMpHMbl5qBksLHPoq KGgjOrqmrN3nttfzJXACnqX3jZUYxL+kkOWEctx5gErOXYLOWF2eS51FWj2cc8U7GvY8OYRcOBuC Oa6XB2EWXjKiZwcIq6vIduo6AEu7yNe/RShiVdC1j5DDQUzbC9S/PI4cNuniVhL8Pmr4uuevkW02 eoP9arBNuSp6bG/WJDlp5W0wH5+QZGnuOveu1NjVHVzOigkMmXa9rTl/e2eawl2e1h4ou4nTRPcL 7tq4RxU1DGIomRxNcdGtAFyurZmSAZXA8bG9lrI8Ma+VxzMaL2a0k+W3wUReomqZFz1dSxro4xTE O6zZmBxI7MrlIDulYTGLEGxzMI2bf/6tnOjzMzEZieoDa97LJbls/eB2gLRyBX1Dc5bW07SXsuC2 WV8bbbyR/JJzHW0jKine2VzNW5KksYTwJG1TRIwhrmuzNfvzgjzUR1E2V08cz3TRvFxHLE0sbysN VrGS16s5wINawPlpoelgmcS4F3q8+XL33FwueJwvkEGU1z47gGOneBftJ0PgVzcfWMKmheKacROy ODmuhZYbt+g8FrO9s0FIaKmErRYtdDU5I28yNo7itopprdXN7IM4mS6SCmacSOy7INAR2vOzuN1m cwVdUyiFZWs6Nt3tjuByc/aD3o5rp8YDXfSBbHY9U5YmnyLvMKfDC+OolkdVyPa/2Y3NFm/NNJRS 209fJ51gqYi3Eqx8IxWZ8EWgZA0tGm5z955EKX9G1E0wdU4lKYmnqRRXYO87T427FZAAaNLB3LPW /UKpK2f7buXwiaGgAbseAt+t+kHisEH9GO5DYbYyFljlAz1/fHil5PeHitOp7rvFOpxIU03dAb/W 9iXl4eS1AZ7xHclhueEosoGbycPJLye75LGXg8eKWf73ml24AudvA8FjM7gPBbWl4nxT6we8l24G ud3AeCZzwHgs53jb8FjO7gPBTTcDPSHg3wTpP1W+CxnPAeCzn/VamjuA6T9VvgvO4x6LU2LekOHY xJM+KSiJIaw2z8Aez8V6HMPcCqfSPCnY3gs9DFKYJHjqyNcRlO46FHFbAWirqv8AKMTpaba1l5n9 2gHib9y7YZSSUGF01LNO6eSGMMdK/a8gbSuOHfX1FVWHY9/Rs+63T43Sd9I7Tex7qlPYuru+WWKI i0OcgYyf+Vys/SER/vG3zU1gysa3gLKBinXkooffnBPcCfkrFUjfNvgdE7rGK21fovYKvxr+wD/y x/xBWCr8a/u//wBsf8QS18DI7L+tDiiwGwIsDYFlXMSuq/q8YoZPeD4/EX+SsVXYt1BSzfo52+fV +asVSPikje1vs4Pc11+4Vdh/1NZWUu4P6Ro7HfzurFV1R9RjNNL9mZpidz2j5pO5pix7ylDavS/5 LFERXOcIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIi41VVBRUz6iplZFCwXc95sAO0oDznppjooK D6No8QipcYqxlpRJvN/LsJ3rv6M4a7BMHbUYs2jixKRuaqqGgN6Q338dN/G68nS4fiHpVj82I4xF RxUFK/PQ1rbOJbfTKb2PHW69TH9HulDqWmqMVqBsml6zAeIJ6o/ZVrOx+p327s4t3eoboWf030/V w6lmq/8AuWyRj9o7RyuotVJUBubE8UjpYzshptCezMdT3ALWpfVCPNiOIw0MOzooD1j2Zj8gFzpW sDi7C8LdI87aqrJbfvN3H+tV0xs4xVUs8XdyRFTalBBJwrCy0nbU1RLSe3W7j32WlQ+B0pjr8Qmr Zv8AK0gIaOYGtuZslS6IydHiWIy1Uv8Ak6MEDvDdfE2XVgq4qb6qGmwikGt32L7choPEq2/PN3vy RAHrcVPaKKlwmlG91i+3IaDxKjRtpZpA+CmqMVnGomnNoweIJ0/dCRNpp5M9LTT4pMNfWKg2jB4g nT90LeplIcI6/ESHHZSUIOY9463eLK6V9Fjnz5tAzVSuBEeJYjlJ2UdCDmPMjrd4ssxMmhhc+npa fC6fa6aos6Q9tr+ZKwxs1NC50FPTYXT7XSzkOkPaRs7ye5co2R1MvSQU02JSjX1mrOWJvaNLfuhE lTd0+ObbBhjYamTNBBUYpKNRNUHLEDxG7vaCtp5bydDV1z5pP8pQNIA5ka99wEmlEkhhqqyWqkGn qlC0taOxxHzICOL6WJrJJafCoD7MUID5Xfz7ACr5z9kuJA+spIbXpsIgJ2Ns+V3yv4rEcdiZ6aks QNa3ESb8w0692iMYYgZ6alZTNt1qyvdmeRxAJvbmRyWjWNqn9JHFNiLxr09UckLeQ38wDzTfnzv9 X5AwAysdcCbFX+885KdvyI/eW8knSO6CWokqZBoaSgGVjexzv5jksOeKklj5ZcRkGnQUoyQt5u38 iTyWHPItTPmyW0FFhw1HY5+7n1VbHOfRcQZdI+BgpXyso2HUUlE3PIeZtp4d6kx4lUUQibK5lLAN GxyuM08nZYHb4qIT6qBDmjoA/UQUw6Sd/aT8dDzWB+Sm/UoOk+2/66pk5DXXx5Ks7KE13lXOf7gW rcXdG6SeoiNLTv8AZdNL1yd2Vmv9blYMxamNK2omf0LHaXmGQ+BXmXfUHpsraXNoKirPSTv+63dy 8lq76oiocBEToKquOaQ/cj3eXJc8uw2cr1dnz6chVo9FKzpmuid9ab9LFLMxr2tO4ACx0/orVkxl dDVR2c8HonmR74R3MOhP9XVRTUVVUyiaGJ4duq63V37LBs8uRV9R0rqaItknkneTcvk117BsCwtL N2aomn0z04Eps1EdUTUU5MrmuF2yzsa6MX3WFie9d/U4poI2VMUEpZY+xYX4gbl1BI/kVnOd+vML lc5rVTh9i1dpva2xrgOw3TN+ue8LUOHu8rFZzDUZzycFRNPP8k1RnUj7B8ljLxj8Fm19zTyWLAbn NVkDHV/WCzfhIe9Zud0nilnW9lp5KeOeYF3W0eCnXH2Qe5anLvYQlmbnEdyUz/ABNjrGl2e6R3rP W3PHin1nAHuuprmoNepxIWcrdz/EITxYEuw/ZI71N4GS+x4QNfuPgVizCdpHcs5RueErmgH1n6yZ 3jbfvTI6+hHcU+sHvKLtwMZzwHgs5/1Wpndv8wmfi1qmm4GMzd7AtZMr43NaC0kWBB2LbM3ezwKX ZwPippuYPI4JR43gmF4icVrfWnSTH1UOdmLQdGgmw+C9LRwCmo4oR9hoF+K8/XUuOz+mlKWSF2Bt BdKxzWgBwHVsb3JvyC9OqwV9TVzX01Fbav2zvCIi1MSun+sxylZuZG9556AfNWKroPrMcqn7o42M HPUn5KxVLPW9/wBjot7tGOxLrf7hV+Nf3f8A+1n8QVgq/Gv7v/8AYz+IJa+Bkdm/WhxRPGwLKwNg WVcxIGMtvhU7htYM/gbqbG7NG13EArnVRiWkljP2mELlhcnS4XTPO0xi/NUwtOKN3fYcH6r7EtQM YafUTM32oHCUcgdfK6nrWVgkiexwuHAgqZrSi0Z2U9CalsDHB7GuGwi62UHCHl2HsjcbviJjPcbK cpi9KKYtYaE3HYERFJmEREAREQBERAEREAREQBERAEREAREQBeH9NKuTEqiPAPVmzUFS21RK25LH XFhpsO/XSwXo/STGRgGBVOJGB0/QgHo2mxOtl4n0awzAxPU4ww1WIT4g7pHUgBc1hvfW4GmuhdbR QouclBefAku8Mw3A8LpIaHDaafEehFmtuXsad+p6oN9eKs53Vgiz1tZBh1P7kRBd+8dPLvWzzXmD NNLT4TSAbG2c+3foPNRqf1Yy58NoZq+f/NVBIaOTju+6F3RSSu1edPN3LyqUFO2IPz4bh0lRJ/mq okDxdr4CyVL25+jxHEXyvP8A0tGCPh1vOy2qnBrg3FMSJcdlJRggnw6x7rLaBlS2E+p0cGGU20yz gFx7bD4k9yvX9z5/d+yBmL1mGAilpqfC6YamSWxfzsNBzueSjxilmlEkMFRi841E0xtEDxBOn7oK N9UmkvBFUYvOD+dkP1TT2fZ8ASulQ9wIZiWICPN7NHRA5nd46x5iymlHv6/9ubQMVUri4R4hiGUn ZR0IN7cx1jzFlmPpaaBxp4KfCqfa6aaxkPbbYOZJRnTQQONPT0+FU210s9jIe23zJ7lyhZFLIJae mmxCUaipqzljHaP/AKhKKm7PlzbAijjmeJaalmxCUa+tVZyxg8Rf/aEmlbNIYamqlrZR/wBJRDKw Hg43+Jsk0jZ5TFU1MtdKNPVaMZY29hP4nuWz3Pp42xTzxYdCfZpqRuaV3Zs+A71be8+/JLiQHOfT RtjmmgwyE+zT0rc8ruwaeQHetWg07HTQQRUEZHWqq12aRw5X+J7kaHU0bpYYYsOiPtVNU7PK7z+J 7lrGwSO6eCB87xr65XnK1va1v4ADtTfn45t8AYYxs7+mhgkrHjX1qtOWNva1v4DvWbsq3EOdLijx 9hg6Ombz3EdnWQZat17S4o8bC76umb8iP3isPk9ZeYpJX1j26erUYyRM7HO+V+5W15z/AIgPeZHe ryTOmc3T1OgGVrexz/5jksFxhtTF7acbRR0Dc0h+87d5c0LstqVz8ttlFhw1HY5+lv8ASsX6D8nu 2lvr6rRDPK7tc7dz81NNWc+XmBc031QLKHpNeihHS1MnaTrbz5oT6poA2hMm8/XVUvxt5qdR4VVl hyNZh8T9Tk68z+1zjsPjzVpSYZS0VzFF13e1I45nO5k6lYzt4LfnO3yJoU1JhtVK8yQw+qB22onP STuHZfRvnyCtqTCaWlf0uUyznbLKczvE7OQU5Fyzt5y3EpBERYkhERAE7N3BEUOKeKFB/V1sHkbC R2LVFR2a1EU2G+e+0Apdl7EFpWibrbuCjQksCbzoD7sninW3tDuS59yX4XCresVnyFTc5b6tISzd zrcwsB7uII7VnML9ZnyUqSeDz5iqM9fc6/ehLhtaPBY6h3kIA4ey8eKkkxdttW+BTqHeQtiXja2/ MLGZu9vgVK3AZRueEDXjUeRWLMOwkc0ycHApUGc0g2370zne0HuS0g4pndvAPMJRPUgYzN3s8CnU t9oJmbvYO5OoeIU8wUHpbW4vh+FMnwSFtRU9I0GJzC7ML67NnNXMDnvgjdK0NkLQXNG4pWPdBRzS xWe9jC5rTcXIGxU3onjlX6QYMK2soH0Uuct6N28DeEi76VBeoi1ecrHO4C6uCBhfXlrZvfnIHcAP krFQMGH/ACyN/wCkJk/eN/mp6pZeBG3af1ZLZdyuCr8a/u//ANjP4grBV+Nf3cf/ACM/iCWvgY7N +tDiiePZCysD2RyWVcxMEXBHFQMGNqJ0Z2xyvb3ZjbyVgq7D+pW18XCUOHItHzuqSummb2d9lNcH 7e5YoiK5zldS/UYtVwfZkDZm/A/AeKsVXV31OIUdTuLjE7kdnmArFZwurE6Le/RntXpcERFoc4RE QBERAEREAREQBERAEREAREQBEXjvTz0ihw+g+ioMQNHilY21O4MLra9nHYjJKGtmg9PPTD1elr6q liwl5FRA5hyTgHWwG3ZbVe5eyWCDoqJkGH0zB+dcBe3Y3YOZ8FR+jFDjVLg8TZ4qaKrI/KK6VvWk 4Gw1Om8kHsUwmhfNa9RjNSDzjafJo+K3sbJpd6/djTjq58irZiP1OSYPghqMWqQdJpTdgPEE9Ufs hdqqSVoAxLEW0zHezTUl8zuy/tHuAWah1SIw7EK6HD4DoIYDd57Mx+AC1pg5gJwrDxCHe1V1l8zu 2x6x77Lpd9+ebu5IgzTsmjYfUKCKiiOrp6n2j222nvIK4fk1TLoKjGagHf8Ammnyb8SjhTTykSyT 4vUA6xs0iae37PjcrtUSyxxtbW1kdDEdG01LrI7svtPIBTfXf5//AKfRAxUvewNZiFc2nDvZpKK5 cey41PcAsRNmhhc6lpocNgOrp6jWR3ba/mT3JBHJGxzqKkioYjq+pqjd7u223vJ7lzYIZ5A+nhlx Sca+sVByxN7Ru72gpgqZ+ObbBmJsMsglpqeXEpxqKmqOWJp4jS37oWJntnlMVVUy10w20tGMrG9j jf4m3Ykz2yyGKrqZKyUf9JRDKwdjjf4kBbPLqeJsc80WHQHRlNSNzSu7NnwHerYOuvOGvklxID3O p4mx1E0WHwnRlLSNzSu7NnwHetWh1NG6WKKLDYT7VRUnPK/z+JPJGh1NE6WKKLDYXe1UVJzyv8/i e5axszONRTwOkcNTXYgbAdrW/hYIs5w5tvcBGzM71iCB0rhqa3EDYDta38AAjWtrHZw2TE3A+3Ic lO3kNh52PNGtbWOztbJibwb9LMclO3kNh5gHmjneuvyOc/EXjToYOpTs7Cd/Ik8lOvOf8UDD3+tv Mb5H17hp0FMMkDOxx38iTyWHOLz6s6QyFunqWHizW9jn6fLkrOLB552AVs4ZCNlNTdRg7Cdp8h2K 0p6aCliEcETI2DY1osFjK3hG5X5zgvMmhT02EVMkYZI5lFT/AKCl0J5v2+FuatqOgpaKPLBC1jdp sNSe071IAuUJ3DYFy2ltOdxZIE3NysIizAREQBERAEREAREQBERAEREAREQBERQ0niKDuCadqIq/ TWq4ihkEjY7nqts50uAeYWictFDhLiLza7DtbbkUytOx3iFrfsCadqirWKfqTXab5XDYb8ihc8aH zC07wts7hbU9ijST2eg0kZzA7WjuWOoeITPfa0FOoeIV6UJGQHY4HmvPUvpKyf0qqMBNHIx8UfSt lBBa4Xtu2a8V6HIDscO9UWOY9hvo3V0hrIXtdWyCJsrI7gHcHH+t6jSprBdqJicnQ4ZUvG0Rm3NS wbgEb1X4yb0bIhtklY3uzC/kptHSDNezqtrFPaSqSPoaOGMfZYB5LssAWAHBZVkqKhnJ6TbYVfjX 93H/AMjP4grBV+Nf3cf/ACM/iCra+BmvZv1ocUT2+yOSysN9kcllXMQq6P6vH5hukhaRzBN/iFYq uqfq8ao5Nz2Pj+B+SpaanvN7C9yjtT6X+xYoiK5zkPFYjLh0uQXewZ28xqPgpFPKJ6eOVpuHtBC3 Iu0g71Awg5KaSmO2CRzLdm0eRCphPidC71i1sfr/AAiwREVznCIiAIiIAiIgCIiAIiIAiIgCIiAj 11dTYdRyVdXM2GCMXc95sAvAYDBifpJi9Zi2JQUNXRRSE4ZO4ezrtFtSOe9SfTOtrsVxCnwGgooK /D5yG11nXMeu+x6ttvcp1HhdBg1DDhs1Y98cQtHRUt/MC7j2kmytZ2f1JX4LOcA3QlVBpZJyysqJ sTqB/wBNCOo3sLRoB94qRIaqOnvUT0+FUo+wwgvtzOg5WPNGmqjp7QRU+E0gHtPAL7choPNR6cQS TZ6CllxCo/zVSbMHInd90WXdity4f/ldWVM0zWl5fhtA6R521lYSPC/WPwWJfV5JSytqZsTqB/0t OLMB4EXt+8VtUuj6To8QrX1U3+TowQ0c7a+JssuM8FMMzqfB6QaBrbGQ/IHxU435548kgZnknjha Kqohwum2NhgsZD2X+QHetaaN7WukoKNtMwjrVlbcvI42Op7yFimiNzLQURBO2tribnkDqeWgXMmG qlt9bi87TsGkDD/D8SlLqLOf/J+QA6CplzRMmxaYH87KcsLT2bvAErM8gkk6Gsqn1En+SoQQB94j XxICzUSEuENbVlzt1FQg+ZGvfoFs7PSQNbI6HCqd3sxRAOmf8r8r81bCmeX2XmQYeXU0LWTSxYZA dGU9MA6Z/Zs8gDzWrA6njdLDFHh8R9qpqjmld3E/E9yMDoGOmgijoYyOvV1hzSOHIn4nTgs08Lqi US0lPJUy/wCcrdAPut/AAdqYJt5zvbe4GsbMzjUU8DpHDbXV5sB2tb+AASOMV0gdEyTE5Bsll6lO 3kNh5gHmrWLBGSvElfK6rkGoD9I28m7PG5VpZrQGtADRuCwn2lJ0je8+fotxZIqW4O6pscSnM4Gy BgyxDu3991ZxxRwsDI2NY0aANFlui5pWkpXMmgRFsOqL79yo2SD1RbfvWqIiQCIiEBERAEREAREQ BERAEREAREQBERAEREAREQBERAEREATfffxREaTxAAtbgNyacu1EVPpxWFxGitQ/qy896XVdBhmH MxKswp+IPp3ZomxxZy08ewabV6FU3pNhMOK4S9ktfNQCMF/rMMmQsG+54cVWUZpXPmLzj6JellD6 XYY6ro2vjMbskkT9rSp1f9ZX0EX/AHC88gD8yF5PCf8A8e9APROulw+sjrHRNE0pDwXPc72NmwHS 3irP0exmbH8RbUyspWCKD2aeo6XKXW0cbWBFu1VlKsVF43HTYXSctifoeqREW5zhV+Nf3cfvs/iC sFX41/dzvvs/iCpa+Bm/Zv1ocUT2+yOSysN9kcllXMWFXYr1HUc3uTjzuPmrFQMZH/K5X/oyJPA3 +Spa+Bm3Zv1YrbdzuJ6LVhzMaeIutlcxCro/qMckZ9mojDxzbofiFYquxP6qSkqh/hyhruTtPiQq Wly0thv2e+ThtVPjqWKIiuc4REQBERAEREAREQBERAEREAVV6R4rLguB1NdT0rqqaJt2wt2uVqdB dfLaqvo/S70zz+vVmGfQshD82jJRextwJ2doVZVwjiySR6KYPh0FJJj9ZNV0NViji+Sk6Q5tp6ot 1tdumuxeqpxOIyMPooqGA6meoHWPbl2+JC0pWgEnCsP1PtVdXcX8esfIdq0kFK+YtqppsVqgf7PE Pq2ngRsH7Ruu+FmoR0VnywXmyjdTDRSyzZo2T4vUg/nHn6ph/hHdqulVI4WZiVd0eb2aOjvmd3jr HustqmSdsTfX6uKggOjaem1e7sv8gO9a07JWRuNBSR0MJ1dU1Wr3dttp5k9y0xvefPDkgGCeGnJh igwmkGpkksZD222DmSeS0p2MdJ0tFSPqpv8AOVhIaOV9fAAJEIJJRJTRSYpUg6VM5tEw8Ru/dBWJ 3NllMVZUSV0/+TpBZg+9r/EbKcarPzzaIMSuiqZiyeWXFagGxhhGWFh4Hd3EkraeRzcsVbVCEEdW ioQS8jtI17xZJXvhjbHUzx0EJ0ZS0gzSO7LgX8B3rvSUdWWltHTMw+J2rpZOvM/t7D2knkjaiq5+ OSfEHHr0dOPzOE05OzR0zz8L+KzS000jy+hpDEXe1WVl3SO5NOvja3BWtLhNLTSdMQ6aoO2aU5nf y5BT1hLtCXhvz1835FqFbT4NBHKJ6hz6qoGokmN7chsHcrIDcAgFysk2Fh3lc05yk72TQE7hsWER VSJCIsgXNkIAF9TsCE3KE7hsCwoW0kIiKSAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAI iIAiIgCIiAKl9L//APHYx/8A8cn8JV0tJoY6iF8M0bZIngtcxwuHA7iFDVVQk+V+jeAV8sNLif0L TT0rcHjhbTSPGWoeXZ77Nu/Ue1x2r03olRVI9JvSDE5qU0sdS6JjIXEZmlrNb2JG/ivWwwxU0DIY WNjijblaxosGgbgoWEdaCeb9JO8+BsPgslHRkkaxinCUnqp1LFERbGIVfjX92u++z+IKwVfjX92u ++3+IKlr4Gb9m/WhxRPb7I5LKw32RyWVcxYXCtj6ainj95hHku6wRdpHEKGqqhMZaMk0RsNk6bDa aT3owfJSlX4MfyDo/wBHI9ng4qwVbN1gmadojo2sktrCjV8HrNBNFvc02PAqSis1VUZnCTjJSWoj 0E/rNDDLvcwXHAqQq7C/qn1VKf8AClJbydr8z4KxVbN1iqmlvFRtGlhq4PAIiK5iEREAREQBERAE REAREQHjPTzH4KWnZgTK6WjxDEAGwTMaSGa7zuvsXP0boPU6CGOOE4riLQekrZCRHfscd1rDS+xe Y9CsXqvSvEqzFMRpWYjC2QikgMQLoDzOgFrb9e4r3tXJKGNGJVraWJ3s0tKTnd2XGp7gFt2VN1lt w/hXvohI0qjH0gjxGtfUSnZR0gIHeBqeZNls41EVN1jBhFGNgFjJb4DzSFs0cJ9TposNptrppwC9 3bb5k9y5wNikl6WigkxCcf8AWVJswcj/APqLLruS/j+F1ZU2pYyXF+G0RzH2q2tJueV+seWg4LR3 q881vrcYqWnlCw/w6d5WZ3RyymKrmkxGcf8AS04tG372794qbHh9dVMDZ5G0dPugptDbtd+FuaOV O9J59X5UQIVQ8lwir6sucdlDQg+ZGvfoFJpqGtljEcbI8MpfciAMh5nYPPmrWkoKaiZkp4WsvtIG pPEnepXs7NvFc8+0aoLPDD1JSIdJhlJQXdFGDK72pHHM48ydVKRFztuTrJ1ZITai29kW3qrZIOgs Nu9aoilIBERCAtvZFt5QaC57lrtUYkhERSQEREAREQBERAEREAREQBERAEREAREQBERAEREAREQB ERAEREAREQBERAEREBh4JY4DaRoo+H07qShiheQXtb1iNhO9SUUUVal1NqLjqCIikoFX41/drvvN /iCsFX41/dr/ALzfiFS18DN+zfrQ4ont9kcllYb7I5LKuYsIiIQV2G9Sqr4vdmzDkQD8bqxVdD9X jtS3dJExw5gkH5KxVLPCnE6O0XzT2pegREVznK5/1GORu+zURFp5t1HkSrFV+LjJTxVI2wSNf3bD 5EqeDcAjYVSF0mjote9CM/Ll9qGURFc5wiIgCIiAIiIAiIgCIiA+bei1Bh3o3hzqCHFqaiY+Vwkv K1073ja3g0jTQX27VKwz0jp6r0nmwfB6Gz2wmR9fWZrus6xsDq4A6bRqDwXi8FwSrxnFKqTDqRtT LBjhnNe9wAcxutjbjcHS+3dpf3jPReun/wCIP0jiUbJqP1Do7s6rA/NfKW3uRbjotFa0SSuVcNud 7FCwAp5p9elxepaeULD/AAjzKsRhtXW2OIVOSLdTU5LWjm7afLkrSOKOJgZGxrGjQBosAtlpK3b8 OeGpeRFDlT0sFJEI6eJkbBsDRZdQL7FkC50Qm2g8VzuTb3kmb2Fht4rVERIkIi29nU7dyNgezz+C 1RESAREQgLIFz2LAFzZZJtoFD2Egm5WERSQEREAREQBERAEREAREQBERAEREAREQBERAEREAREQB ERAEREAREQBERAEREAREQBERAEREAVfjP92v+834hWCr8a/ux/3m/EKlr4Gb9m/WhxRPb7A5LKw3 2ByWVcxeIREQgrqj6vHKV+58b2HnoR81YquxPqTUM3uTgHvBHzViqQ8UkdFrfCD3e7CIiuc5yqYh PTSROFw9paVwwqUzYdEXm72jI7mND8FMVdQfU19bTbswlaOx38wVSV00/I6Id6ylHZR+z9UWKIiu c4REQBERAEREAREQBERAcqajpaASCkp4oekeXv6NoGZx2k9vauqIoSoSFkC6AXQncNiV2AE2FgsI ilKhARFkCwuUboDIFhc9y1JuVkm5usKEiQiIpICItgN5RuhI9kdpWqE3N0UJAIiKSAiIgCIiAIiI AiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCr8Z/uyT7zfiFYKvx n+7JObfiFS18DN+zfrQ4ont9hvJZWGew3ksq5i8QiIhBX4yP+Wuf+jc2TwIKntOZoPEXXCvi6bD6 iP3oyPJKCXpsPp5PejB8lRXWj4HQ77Bbm+qXwSERFc5wq6q+oxekm+zKHRO57R8D4qxUDF2E4e6R o60JEo7jdUtPDXYb9nf5ii9d3O4notY3iSNrwbhwBWyuYtUuCIiEBERAEREAREQBERAFkC/JAL67 kJvpuUV2EgncNiwiKQERZAvyQgAbzsQm5Qm/JYULayQiIpICIiAJe6IgCIiAIiIAiIgCIiAIiIAi IgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCgYz/dknNvxU9QMZ/uu TmPiqWvgfA37N+tDiicz2G8llYZ7DeSyrmLxCIiEGHDM0jiLKBgx/wCWtZ+jc6PwJCsFXYZ1Jq6H 3JyR3gH5qkrpp8TohfZTXB+3uWKIiuc4Wr2h8bmHYRZbIhKuIGDuPqAhd7UDjEe42Hkp6rqf6jGK mH7MrRK3nsPwCsVSz8NNht2hfmOS138wiIrmAREQBERAEREAREQGSb8lhEQBEWQLlAALoTfQbEJ3 DYsKMbyQiIpICIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAi IgCIiAIiIAiIgCIiAIiIAiIgCgYz/dcvMfFT1Axn+65e74qlr4Gb9m/WhxROZ7DeSytWew3ktlcx eIREQgKup/q8cqmbnxseOeoPyViq6b6vHad26SJzTzBBHzVLTU950WF+lHan0v8AYsURFc5wiIgK 7EPqa2jqdweYnHsd/MBWKiYnCZ8Oma32wMzeY1C60swqKSKZux7A4LNXTa23nRPvWUZbKr3XudkR Foc4REQBERAEREAREQH/2Q== ------=_NextPart_000_001C_01BF7B2A.9AA1C880 Content-Type: image/jpeg; name="design.jpg" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="design.jpg" /9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYHBgUI BwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy /9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy MjIyMjIyMjIyMjIy/8AAEQgCWAMgAwEiAAIRAQMRAf/EABsAAQADAQEBAQAAAAAAAAAAAAABAgQD BQYH/8QAQxAAAgEDAgQEAgcGBQQCAQUAAQIAAwQREiEFMUFREyJhcTKBBhQjQlKR8BUzYqGxwSQ0 ctHhQ1OC8TVzRBY2Y4OS/8QAGwEBAAMBAQEBAAAAAAAAAAAAAAEDBAIFBgf/xAA9EQACAQIEAgcH BAIBAwQDAAAAAQIDEQQSITFBURMiYXGRscEFMoGh0eHwFCNCUjPxcgYVgjRTYrIkQ5L/2gAMAwEA AhEDEQA/AP06IiYTwxERAEREA6JXqJyYzut8w+JQfaZIlkas47MsjVnHZnppd0m5nB9Z1V1bkwM8 eSCRyJEvji5LdF8cXJbo9mJ5iXVVMebI9Z2S+H31/KXxxMHvoXxxNN76G2JxW5pP97HvOoIIyDmX KSlsy9SUtmTEROiRERAEREAREQBESlV/Dps3YQDz+IVNVUJ+GY5LMXYseZkTZFWVjFJ3dxEROiBE RAEREAREQBERAEREAREQBERAEREAREQBERAEg8jJlKpxSY+khuyuStytv+5HrvNargEkA49ZnoKT TQdcTTjU4ULuOg6yuOkUiXuyFAJyQSOuJAA3JyB6S+wJHmUic2YrTIBIzzElsgLv12PUy5OT90gD EA6KYAKnI7coKlFBIBDct5C0RL3K4+7jf0lVALMTy5S5BTJYHaVUEUxz33MPcgSGOATJkEamVe8l 7BEqpFMHaJJOcYAHtGDnGN4QZESxwNlJ355ksAg2YNntJuCkkKWOAMmAcdMy4XQuplbfkZDYRDgL gaSGHPMpLKASSxOO4GYUGo4UbkwDpTUhdffYTS5Ntac/PVGB6CQiCpVC/wDTQZJ9BM9eq1xXz05A dhK/eZ3sii7KWPsJFNDUcKvMyagIbTjGJ2AFChqP7x+XoJ22cWJcozLSBAppzPczlVfO2VI9BiWL mnS0gqSTkgjecJEUS2IiSBk4nZyWUYGo/L1lOcs5ycDkOUrAAGTiSfblHIbgHMiAIkjHWQSTzgCW OFXGPN19JI8oDZ36CU5mQSJJ3Ow2jHTB1SdlAwTq6ySCss23lBBHcSBsM5HtAGc+kAEYx6yIgDMA SVAOckDHeCegO0ljyXIIHUCAVJycySc9MSIgCWVdW52UczK4kliQB0EAHGduUiAMnEQDtbU/ErAd BuZ6sy2VLTT1nmZqmeo7s1Uo2ieLERPCPJEREAREQBERAEREAREQBLLUdfhYiViE7bBNrY0JeVVO +GE7rfIfiUiYIl0a9SPEujiKkeJ6yV6b/CwnSeLLrWqJ8LGXxxf9kXxxf9kevEwLfOPiUGdkvabc 8iXxr05cS+OIpy4mmJVaiNyYGWlqaexcmnsJh4hVwopjmdzNxOBmeJXqeLWZvWW0o3dyqrKysc4i JqMwiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAJyuDii3rtOs5Vzso7sJxU9xnUPeR2pjJ UATuV0fEjDPLecqSlnGATjnidDhmONWPzh8iCB8JOTn+shhrK6nGSestn7MKG2J3HaRUbLKuVIA5 gTiRKLBGqZby/niCNTDCH1AjGwQICT1B3kuAi7o4Y8iTJByqb7AHc4l3bYKGYqOhjOllCuwxvuOs ZzliwyZC3uHsV5LjI3lV5k4HYSWPMmKakjkT1OJL3ILFSoyynflJQquTqYOOWBJ8pYk6go5dZCHW 2TU9QWkN62JS4nRW0qT4iEnfBGTOQBdumT8pao5PlypHcDEqRpGDjfeSiGSqlm2XOOYEMQThQwHY nMkroTdGDHrmQmFyxLKemBJAZtI0qx09QZ1oLpQ1DzOwnFQajgcyTNtKmKlYU/uIMk+k5k7I6irs h28C0xtrqc/QdJmQaFLspIOwIlqzm5uSQMZOABKsNdQIgI6YMiKstQ3qTQQM5d/gXc+vpLay7tWZ lGOQMmqQAtuhGAfM3czi5+4MYHWTuRsVZi7Fjz9JERgn5Ts5Ev8AAuxIaQg+8c49pDHJ55HSQSRL IpOTtgdCZAGTiWYHITAz3HWGCvxE4Hyg46SzLoGGUhpSSQJZRgaiNpCgE7nAlviO3IdzIZJVsnzb bycYAJBweUlUZzqCEr6SGwW8oOOxgEoQMtqYHpgSpJdssdz1MljhQoY45kHvI5DYg5gAksRy22gj BxGNsywXC6mU4PIyQVIxtg5lshV2YhjzGJCYzliR2IEhmLHJOTIAVipyMfORESSBLIoOSx2H840k LqMrAJZtR7DoJEkbb5GR0kQCSMY9ZKKXcKOplZssaWWNQ9NhIk7K51FZnY3KoVQo5CTETKbDxYiJ 4p4oiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIABI5GdUuaqHZifecokqTWzJUnHZnetfN4DArueom AVVPWd3GpCPSecec9PB15OLTO3WnxNgIPIyZjBI5GXFZx1zNyqridKsuJpicRXHUToKinrLFOLLF OL4loiJ0dCIiAIiIAiIgCIiAIiIAiIgCIiAIiIBGoFiudxvJlD++XHUHMvK6c3K6fB2OYyvfsE5V TmrSX1zOs5He5UdlzFTa3cWR3O6Zztn5TvkIvldgx6YlKB0knUyjuBJZi77tn1MPVkFw2lAQ6E9s SlMZLuVQ+5xJLF3A8px8gZVVLeUIM8zicPdI6WxdF2Lmm2Omk8pGzHJLAfnJbSPLpdT6mGYLT0rU YDHIjEm5BUNqZj4mRyGoQ5yQuQQOoEsGKUgAyN6aZVRsXIBHYmI7Ey3KspLCmBkk9Jd107BGU+pl aa7s7IxA2BBlk2OpmZexAhPiRYh20UwqOwJ5jEsraKezJ7EbznnxK2S+w2BM66WqNnyEDbtmFzZJ zUc22IHQyyqWJbQSvpFTdgoRQf4TnMPhRp0sG65M6OSvxN1x+cl2ycBiVHLMA6ACrMGPPadETDeV 1YnpjMi5Ni1EaKRc435TrUbwLTTjz1dz6DpLIqtUwf3aDJmdma5rs7KSo546CV7vU62RXT4dLJUh m5H0l6eaFI1T8bbL6eshEFesTuKa7nfkJFap41XY4Qch2E730I21OYJUFurSklm1GOS5wN50cjnj aSqsW04OesDAGSD6YnVcUqedTCoeoENhIpUKqNKM2OoIxKY2zn5QSXbLHc9TJALtjb+kLQbll8qa iqsD3MlU0qWdGx0IOJRyC3wgY7QWGkAZz13gEE5MAFjgSJbYLsfN1kkAnYLtJIx5NIJzzElV0rrI Vh2JlVG+oqSo54kEl6mEGArKfUyinSC2SG6RszdcfnBOdskqOWYBCjJOSB7yQCxJ27yTuQgIPYyX GkBSq57gwCApqNkJsOYEhiM+XIHYmWICLgqwb3nOEGTqOnTnbtIiJJBIOOmZK4ByRkdpJUKuW5nk JTcwCWJY5MAZOM49ZJOkYUnB5iVgEtzxkHHUSIkgHGog6YBHOevQp+HRVcb9ZgtKeuuDjYbz05TV fA0UY8RERKi48WIieKeKIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAmGsumqZumW6XcNNOFla duZDM8RE9IgREQCHdlACk852Wsw57zO2S6495eIyabsIyabsaBXU89pcOrcjMkS1VXxLVWfE2xMg qMORnQVz1E7VVcSxVYvc7xOYrKfSXBB5GWKSexYpJ7ExESSRERAEREAREQBERAObjFSm3UnTOk5V iy6GUDAbfPSdZRT0qTXc/l9jiPvMTkuDcuewAnWcqWDUqN64nc90i2OzNdJjo069IPPtOg6YZCT0 xK0dlzrUHsRLKCzkkIfQnEh7hFX8lLJRDnrneKaYTUUYjoQZDrrdR4eATyWXBAfbWgHznPFkkZxu WcfKRrLDeouSceYZlmfUQvitjrqEhmLPgFGAHQYiWqsStypzUqY8v9BD7tgKBjoIHlXdQc8t+UqR hMlW82wInTdkcrVllC4Aw69+smrUwuA7EdQRLBgibO4PbE5H7RvM4B9Zzsid2WpAhQAVJbmD0nR8 Ku9NPkYUE5Yqhz3OJzwajnSvyElEBV0jUynT0IkDc5YnHeS2NWAGGOYJlttkWoQDzyJ0QSjEnUai 55eYZnVCQpdgOykDEplmYIrI2ey8psSkAwLBTSQZO8rk7HcUcKuqnbrSGTUfzN7dBOBGkBFDBzsR mXcmpUarUVsHcEHlJo4pqbh+Z2Xb+claIh6sVD9Xp+EGIfmcd5nOy46nnLFtblmYkDvKFiec6SIb AGTJCl28q/ISDtgYGe8voIAXQwf+0lsgsirq1EMEHz3larljjWzD1l2qaUCrUfbpjE5L1bIyOh6y FzJfIfCMAg59OUsy6EwVUk9QZKqd3IQjsTObEE5AA9BJIIiJYADBIyJJBZFxhtYU9MyUy7Zwpx0O 0hmwNAKkdwJLeRACiEnqDOToq/mfAUA8sCQw04XBDdZIXCamVt+RELjOWLDsQJJAyFXZiGPMYhTo XUGUk9CJK+dtTOAf4usnepU+6cfIGQSAuhSxVGB9Zy6y9QgnAULjtKSUQyScnrj1kScbb5zA75G0 kgknC6RgjnykcpcAIM7FuftIRCfMVJXriRcmwYMPM4O/IyEOk51EHpiQTk7Zx0zIgAkk5POSqljg Y+cEAYwQcyzDQNJAzzyDAKhSWwBkyWK58oIHqZAOMy1JPEqqvcx2hcjfZU9FHV1aaZAAAAHISZmb u7myKsrCIiQSeLERPFPFEREAREQBERAEREAREQBERAEREAREQBERAEREATlcLqpH0nWQwypHedQl lkmQedEkjBIkT2SBERAKc6uewl5RR52Pyl5ETmIiIknQiIgCMkREAuKrjrmdBX7icInanJHSnJcT UKqHrLg55TFJDEciZ2qvMsVZ8TZEzCsw9Z0WsDsRvO1UiWKpFnWJUOpOMy07TT2LLiIiSClUZTP4 Tq/KXByM95WoC1NlBxkSVOpQR2lC0rvtS82cL333EzlbjyMe7GdGOFJ9JS3GKS/nO376LV7rNy58 LSNBGPmIZCFA8NSTyIOZCg6dRVD15yQm2o02xz2M5JObDDjysNsjedFIUHFR1J9JQaTV1AuB+eJY uSdOvyjlqkLUPQI2Aza1z2IzmKeXBcpTOT1OIqsSuMoR6DEhlwqoEUHupzG7GyKnzv5V+QhcNWz5 lVeWN95cKFGHVge4kKwSmdLuCTnGMSW7uwS4li2pgPFOBv5hKEmpUxlD6gYli3h0iQ6E9sbyUUrT yURuu5kPcngVrMFXToUE9QcyAuimMqwJ5HMqo11CdBKruQOktsz/AHgv5yVucslcKNRZg3TaXU4G fETJ33GYDlm/e7DlqEENVcUwUOeoGIfaSjrbrzqtpyeQ5TrXytFaa08M/mcL/ISQFGMgGmgzz/lM 9R9dQ1KiOGPrtK93c62ViFp63FNdSjm2TnErXqBjppkheWmdHYUqRTJ1tuxH9JwXLHWzYPQmdrmc vkD5VwGGe0qu3mIBHYyN2bpmWCFm0hckc8Ts5JVdtbIxXuIVyh2YgnqOYEltI5BhjmCZTPXJyecj cbEk+I/mfbuZbBZgoKEL8swToTAdGz6bzmpAOSAfQwC9Qj4dCg9wZziXpprYA5x3Ak7IbshVB+I4 EupwuQ6+xGZBbVhNQCjkTDkswXKn1AxI3J2KjLMTgdyOUnBqN5U+QkspACaV1dwcwRoXBRg/vJuQ VO5woOO3OWODhA50/wAQ5SchFyrMG9pKHClta5PQjJkEkO2FChkYegnMEDOQDBOTmACxwBkyUrEX IkqATvkD0g4/3k5wuATvzEkgEs5A3PQSQh1aQRn3k5CJsRqPP0k40U8lVOeud5FySjfhwMjqOsZw uNwfeQuOZBI9JIAJ3zjvAIxtvnMsuw1ahkdCIHnbzPjHImQ7Fm6bdhACHBJKg+8rESSBN1jS51D7 CYgMkAdZ69JBTpqo6CV1HZWLaUbu5eIiUGkREQDxYiJ4p4oiIgCIiAIiIAiIgCIiAIiIAiIgCIiA IiBzgCJ0ZAV1Ly6jtOchMCIiSDDWXTVM5zRdLuGmeevRlmgmciIiWAREQBERAEREAREQBERAEREA SV3YSJZcb57TmfusmO5U85YOw5GVidrQi7Oy1mwSd8S4rKee04fc9zKyYVZFvSSVjXrBUkHpK0CD QTSCBjrMwODLJUYLnO5JJnEqyVeN1un6MKqsybRorHFF/aWor5UWZatUtT0kczNdB1ZtgDgcjNCm nNvsNKmnFGlwT5RTAPcQ40qBpcH1MtpCrk0398ymQFyXYfKL6XO7ahG0qNNRgT3EvyGzoT2xKpzB NQbDbUJK5dycI2Nu0hKyD1ZVhpRcohyeed5KpnLmm2n0lHGutpCAEfh3zLsAGCgOvffMLmGCwC7O 66umJAYswzU2HItId9wquxAHIiWzop4DKc9Mbwt2w+RDZqVQuUIXfsDIqnfARQR2MINClmRGye8q V2BKnSe0J6XDWtidOlQCrKx3OTOmoIuEqOD2xic1IB1MWAHIjeXVtT6jUG3LUJNraEdpYvpTZ6Z9 NM7UEKI1VgupvhnJFatVAGhgPlNgUeIfKPDpb4HU9pxJ20O4ricqw0oKQQknzPjvKIqopqHOF+EE 75kYarWyVYMTkknaVr1QcBSyhdlGJKXAhvicnYu2AzMCcnMmo2kaFZWXviKfkBbIDdMygBck7d52 cgKcDYHVynQU9K4KOGPXOBIVCx1eGdPTTDHGwzv0O+IbuCp0lsHIUdZdNvN4i57EZkALyFTAG+GH WTUc4xqRs9hHYO05uxc5OPkJWJbSQuoqdJ6zrY5IxyGDmdSwp09KO+TzBGJNMCmutmYMeWBOWfEf zNz6mc7nWxZWKU9ipz0I3hVwpchWHYmMF2wCu3yk6S7YFPlz0wCEQ/EUYr6Sy6c6izqem2ZV8AhV DL3BMs9Q6cCo59CI3BSo5Y/EWA5ZkFyVC7YHpIA57yVU417EDoTJ0RBBGMestjSmSrAnkZXILZI2 7CSBqbbOn88QAq6mxL4QDIcZHfrKnAbSrHT3MmqxOFypHcDEjcEAGoxO2fykEF2wq/ISOQ5A5lyu hfMrBjyMkFTg4Cg+slm0jSrHT1BhG0knUQcdJQkk5POASDjPrIiAMnAkkCSOe/KRiWOAMKT6wDvZ 09dbV0WelOFrT8OgO53neZpu7NdONoiIicnYiIgHixETxTxRERAEREAREQBERAEREAREQBERAERE AREQCyPpPp1El0x5l3Uykuj42PwnnIfMFIlnTSdtweRlYBzrrqpH0mGeiRlSJ55GGInoYOXVcSGR ESiVA7MAPhOJsujm6WheIiCRERAEREAREQBERAEREASw2Q7SsschB2JnMuCOo8WViInRyWbkBKyW +KROYe6iZbgc5AULrwMDVyll+KR8TsQdgBkespqf5Yvl6pkN2S7yrjOkes1WiM1Q6QTt0mVt3UfO brIeViVbB2BEuT1ZogtYo1ErqA86459ZWq2wVXY52IYS4IUatbhvaUBzVyai5HcZmhrSxpRdnKqF DI2dthBXSmCiEnqDvIALPqIU+mcSp31MEOP4ekJ7sCkAELsjbnYgyyELli7qfQSF07Y1AAe+8lnO nAq7csMJDdlYbsonmcszjOeZ6ySWc5wvbHKTp0jSrK2ZFQYIXSuR1BkvRWC3uCNTBVQDHQShwXOA QOWCZdh4aeZGDHkcygwBv0k8e4glmOAgY45kToPKmFZDnpjlOdMlm1M253yZ2pI1WpnShz0JxHC7 J7DvQU0U1lFLHZSDuZe4+ypLR0k9XI7yyBBU1FQEp9B1acqRDVGuKgOEOSCeZlW7ud8LEuBbUQhJ Dv8AFjcgTJku2CxKr3lq1ZnctrbU3xAymyrsRnrLYqy1OGyajamxkEDliAhPkCgnnkQq4XWQrDsT LKmkZem/uDiTexFiTpQbo6nsTzlM4y+pg/TaT5WbcsFHLrKO5Y7sSByzCQbOisQhOtMnfBGTOROT mM7Yk4OAMZJ5SbWIvcIpZtlJ7gS4ClgdLaO3OAgUYYMrd8yA5AJDEEbDEjcnYl3LEKKjafXpBGBo VlbPpIQ4y+tc9iM5l1Q7sVRs77mNhuNBC6dCsT1ByYKrTXLU3HrmVQanJFM4HRTylHYE+XIHqcwC AfNnJ95LMXOWJPvIBI25Zlz9mMKytnntJIKgFmCgjaTU56dKgjsZC7AkgHpvLpTAGqorBeh5Q9Ai uj7pUhu86O601xSZgeu2MytNgCTrZfYSjMXfdiR3Mjdk8AjFckY+YkqNtZAIHQmApZtII268ocgn AULjtJICYZiShI54HSVY5PXHrG49I2x6wCIll8o1AjPYiSo2LkAjsTJuQQRpGDjfeSV0AhlIbpCK MFmUlfSRkFuuPzkEkjyrqywbptOlqmuuOW2+4nJ3LHdiQOWZusaeELnrynMnaJ1BXlY1xETOaxER AEREA8WIieKeKIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIB0RhjQ3I/ylXUqcGVnRSHXQ3yMj YHOYq66ap9ZuZSpwZlul5NNOFlapbmQzKxwpPacrYfZajzY5k3DYonudp0QaUUdhPQ3n3FW8+4mI idlgiIgCIiAIiIAiIgCIiAJZtgBnpKyW57Tl+8jpbMiSvxCRLL1OOkT90iO5U7mIidEFl2BMrgat huRlvaWOyD1lMHUCDz2xM9TbN2rzsKmyI3NT2E9CyyFzlgM8xPPXeo35T1aB0UFAdlJ6Y2l8NZeJ rgut3JF3fJ2qEgfiE5sfMQCpHcCdQ5WnsyexG8qqnQWKocnOcy6TsXInTjylATj7plai6Qq6GBJ6 mXVNizU2xzGDOS71sksFHI88QlZJA6hgiYFRwT0xILYIHiIcb8pIbU+TV2HLUJzLF2IypydiBic2 uyU7IsozqcqpHYnErSQuS/hnSeiyaw2WmEXUeoOZL4poBpZW9TOnrIjgc289TYHSO+8VMZCISQdz kS6EU6ZIdwx5jE5puSxOJK1DLZIwi4838prVNFPdF1NsCDkzPQQ1HLlVIPQmbaYBY1AmFQbKOpnM pEpEVkOKduoJHU+s5VmRSKYYhU5EDme8uT4amo2oNU5dSBMrHOEVmI7GI72EmF8zFmbl1Mgaqrfd 2+UljpQKCpzzltJAC+GrE9QcmWXOQELNkU9hsdMNgbAOD1B3ltKouTTce55yqkKCS7qTzwJBJDMF TSjv7EYnKSzFjknJgDJxOkrHL1JUbFtsDoZammoklCV9DjEhtyFCjI226yzjRhFDBseYSGECQxxg hR15mRszadeFHLVLbAaVqMM88jAkltKbPTOOmmQSMl2x9mwHyzK1cDbQoPcHMlcCnqKIfc7zngsS Qu3PA6SUGBsp2O/I5gAfeyO20AAtvqC/nJdsnAYlRyzJIJQ4y+tc9iM5kAGoxO2fyjTnCgg9Z0Kh V8yKB3B5yCSqLrYnwyQOixVfUQqqVA6EyCfLnSRn4ccpC4GSxYHptHaCNgNicnmJLYRcBlbPYQjE MWyM+ozmRvUfpk/KSQAMKWIBHLnK4OM9JYKXbCry6CSdJYaQwHXrAIABPmyB3gDU27AY6mWYjZA5 0+vSS50oFDKw9BAI81Vvu7fKVc5bAUDHaTyp7qDnrneUhBlmIAAAIPXJlQSOURJILIutwo6meuiB ECjkJhsaeqoXI2E9CUVXrY0UY2VxERKy4REQBERAPFiIniniiIiAIiIAiIgCIiAIiIAiIgCIiAIi IAiIgCIiAIiIB1GKi4PxDl6zNcJmmRjcTpynRgKyH8WN/WTCWSSYPCrearST1zO84gE3lTP3Bidp 69PW8imGrbERE7LBERAEREAREQBERAEREAlfiEE5JkrnOR0lZyveZ0/dEsNkPrKyKlWnTUanVeu5 kTa0uTCLeyJiYKvGLOkceJrPZd5lf6QIGIW3c477SqeKow3kbqXsnG1fdpv46eZ7bbEDsJUbef8A DPAf6RHP7tF35ZyZos+JVruuqkIqg6s5329Jmni6Tp5Yu7LcR7ExlOnKpONku09aluxPrPVpsXpK GqAe/SfHPccQ3ajeUGyT5cyKPHb4IyVLxVcclVA2fYzunjoQeqfyPQpexKs7yhNPxv4WPs3JY4yh C/LMaclVFMbc9J5z5ahW41cKShypOxbC4+U31LXjwpColakG6jG00LFKbvGL/PicVPZrpvLOpHx+ x7dQgeUK4PqZUNpTZ2yeYI6T56ndcfR2FWlSUAfGxxmQ30iureoq1qdFzyyr5xJljILWSa70F7Lr SeWm4yfY0fRlvCpeVlJPTG8IminkqjD1M8P9vvUId7GqVB5ouxE0Dj1jVIU5ot2ZSJZDE0X/ACKZ +z8TFe433a+Vz0UGWLspKjbaDhnG7AfnAxoAAIPXJkqccnIzscy/h3mPZ9xLnXjNXrgapVxuKakH PWX143DI2Nh5ZFBC7ltKsOWCZynxJtwO6oUVRoUMeRBmw0kULRZWCp53IOxMrbIuTU0khfhHeRcO tJCivUVs+YgZyZVmvqWWSM9xcF3LB2HYYwJwTbNQsAemesMxdwC5I7mS5NQimpUqvI8p1KSpxvxZ XuwiliXIQ56E4koms5FJt+Wk7SlTAwuhQe4OZYfZJhtQZhtvMbcnrfVkqxZmTIGXUD55MpUqE7B2 YespqLYDMcDlC7ksWAI336y5VJR3I3I2xnPynTToTJCnPLflKjNR8+X25S6JrcnQdI6LLYV3J5bE ZSUU0lFRlJz8OIUhfMXdW9o2L/fUD57w75woqMQeeoS8glWJ8xqrn+IZnJ2LN0+QxOj1CBgMjZ7L KKDjOAc7ASVzD5BhuFCjPp1ggKNJUhuu8sE0KS9N/fOJQAFssTjvCILl9CAJUf2xiQvlXUGXPYiF AJz4gGOWoSdWt/Ng45YGMwSE2QsyKR6neVALkkKdI5gdJZgztp0gkdpV8KcBWU9QTCAXSWOSwXpj eKjFmxqLAcsyAdK7Ehj09JI8oDBgT2xJIB/ACCM84ZSuEwCx6g5lgpVSxVGz6yQmlcvTf3BxIuTY qRoXBRg/vJBFNcq7hj0xKhvtMgkf1kO5Y7sSByzFhcsjkFjlc89xnMoTk5kROrHNxEnGBuNzykQC TjbEiJ2tafiVgCNhuZDdlclK7sehb0/DoqvXrOsRMrdzalZWEREAREQBERAPFiIniniiIiAIiIAi IgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAjVo83beJnvqnh2dQ9SMCcTlli5PgcTlki5PgQKaXdoLu iuHJOsdff9f+80127NY06J0g4XSw7y95QRwLi33ptzA+6Z6uDbdCN97HVOLdJN721MMRE0kCIiAI iIAiIgCJSpWp0ULVHCgc8zya/H0U6aFFnPIM2wlVSvTpe+zZhcBiMU/2Y37eHiezOVa5o0FLVKiq B6z5yrf39yyrrK6uVOmN5oXhN0qLUZkdhvoc7D/mZv1kp36KLZ6n/ZadCzxVVK/BfX12Nrccokst ClVrN/Cu04Vb3iboXFBKCficyy8SWypla9stN+hUg6p59S/+tVddbDheVINhR795mnXdtZ6vgtPu b8P7Pje8KCyri3mv3Waj8XodaTcTvKTlWJX8XLPtOJt6AYLftcow23ORNH1+pUAV7pKCfhprkzhX q2ykGj4leqfv1MkL8pTPI9b3tz+m56FHplJxyZU9sqs13yaS8L9h2a34TRXCh6r9FBOTOVva1Wqs xsWZeiZwvzPWFr07R0rUtVWp9/UnP27T2F41a+Hv4gJ6aDO1GlP3mo9xnrVcZRX7cZVL8W35K1u8 81+C1rlsmhRoj0JzH1FuHXKYqroYaRsNRJ6TXd8bpU6Q8AF3blkcvecbepZ+avcXK1K5HNtgvtJq 06DTVPfnczxr+0JUX+oTUHdKKTbfje1ubOlnwc1rhWrqqUtWygfEPWe8/AbCtkm2pA9wcTPZ3Fuz 0lWvTPlG5Ydp6Vxc0LagalR6QX8QbM3YOjRVBNpN21ueasdjarTu1wSV0eeeAWmsaFqoBz0VDPLr Una7Fvwy5uqjA+cs+VWbM3fF3GjXb2fItyZ/b0nsWdrRsqfh0c0wORxz94jQjVk3BWjz+n1N7xdT DK1aWafJ6pd/08Twbrgd7XZdXEWrd0qZAna3pXlgMfsy2rKvNkOD/Pee6jYLNrXPYjJnG5u6VpRa tX0YA5Z5+wnTwlODzp2t+cSpe069VKlKKlfha3/1secvHqCsVr2VSiTtkqcTlc8a4WQKfhmvUO4C rJS2u+NMHq0no2PRBszzTU4PY1xpFuAq7AjmPnEenqRtBq3ajuSwVGadRNS4qLul+ck/iZvrvFK4 Bt7MUlPJ6hnrW3ipbg1qiGrjByM5nmNwu4osFsuIVQg+7V3Ala3EuI2YxdW9OrSXnUpbSVUlDWrf zXyOKlGFZKOHy92qfzevwZ6zEthdsnbtNVGngbJvy2nzY+kdF6606Fu1Wo48obYfnPq+Fq7261rq kaDoMsNWR6Sx4mnPqQdzNPBV6MVOqrX5k1QtCpTDMUwDpA5knrMtesWJxUc9METjXreNxUVDVcKq eRQOUsv2j+dthvqkOajuUVOCRKnw6eQRqbbBHSMaEyUQ+uZIy7FsIwG3PErpNRsLT5c9MpbcnqVi mmfMyMV57SjHUxPSXq6VIRVZcc8nnKcl5kNO1zIfIg46SzOSAu2PQSF2GrUMjoZamhPnwGA6ZkWc nZAstJm8oUZAzkHMtUwABodT03k6QBk0nHsZzQ+fOWA6EbzbTgorQhl9YRcCo47DE5oTqLEjPr1i o5Zsaiw9ZYKT5FZSOeeUs2IKgNVJby/0lgyFt6ZzyAUxUIA06EB7g5kFdC+ZWDHkYAbBfADAdc7w xCrpRmIPMEQjaVJ1spPYc4TmXZhkb4PWATvTpgZGW6Y3gqUUlgpz68pKlqjs7BWPqcSmk1GJVNh0 EAlQFXUytg8iDiQoBOWLAd8ScKzAAMF/OWLajoFUhf4oBCksdTVBkfi3ltLO2o6CPfEio5041I2e wlchaYyinPXO8gEOQTgKFI7Q+2FwwPXJlI35zqxFwCRyiSoBOCQPUwzE4zjbtJIJXbzEAjsZWSTy 2kQBEScDTnIz2gET0rOkadLURu28xUaZdgMA5258p6qqFUKOQlVSXAuox1uTERKTQIiIAiIgCIiA eLERPFPFEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBMV99pUoURvqfJHoJtmIfa8VO2Vp J+RMoxGsVHm0jPiNYqHNpfX5GmsuaRHacrK6+r1CGXVTbZhNBGQRPPYYYjtPWwctHE0JuLujVeWy 028SkQ1FtwR0mSbbK6SnmjWGaT8/QzldW5oVDjemd1YbgibDqUU1miZ4iIKxEq7rTUs7AAdTPIvu NpTJpUMa/wAR5CVVa0KSvNmvCYGvi55aMb+R6Nze0LRdVWoB2HUzx7jjtSqStsmgcgzDc+wnCnW1 thaZrV6h2ap39B0E30uA0tXiXFVnc88bCYZVa9fSlovzj9D6ClhMB7P1xesuHb/48u9/A8a4qVXK s7lmJ3UHOJ3FWitPFCmRW61K33Z6dy9vZp4VnSRq7bDAyR7zlbcJrVUxcNopk5Kjmx9TM/6eam1F 3fl8T0P+40XRU6iyRWy2b/8AFcPk+JipNWtidFdGrPzNNdTGdKtO7FEVbqrUUE7Jq3b0xN1a2/Zl b6zQC+CdqiHp6iXs0a/uPrlb4F2pJ29ZYqDv0bbvy4d5nnj4uP6mKWTi7LNf+q5fPTUiz4TT8EPd Jqdtwp+6O0rdcLSjUFza0VJX4qZGzCevWqJT3d1UAcyZ5tfjNugK0s1H5DA2zNLpUIU0paP5nkUc V7Qr13Ondp7rXLbl2HJ7ym9GmlpRUV6uwGn4e5M3WdnTtaAQAFjuzHqZx4dYtR1XNU5q1PiHQTfO 8PBt9JNalOPxEIroKD6u7d939Fw8SNC/hH5TLxC5W2pLTRFas+yKBOtzcpa0TUc8uQ7mZrK3qVKr XlyPtX+FfwDtOqrbkoQ38irCwjGDxFb3Vsv7Pl3cy9lYrb0iagD1X3diOs6VLW3bGqih37TRKvjy k9524QjDKkVLE1qlZ1HJ33OdLh3DwKlWtQphACxBOMCZLPglPibvX8KpStCfs0UnJ9ZajRqcXvGo 09TWdNsu34j29p9GyJSQIqMgA5ekow9CFVJuKsvn9j2KWJxGEoKDm3N9uy+r+SPIThNzRINrxCsi jkHGrEuKnG6GfPQrqN8NsTPWD6KflqPnsRM19eJYWLVWdCTsFxuT2ml0IU4Zk2rdv1OIYurVmoOK k32LzVmeVU49dUR4VaxArNuigjeZLKra3VyK1/XDV87U2GFT2np8Lsamtr+7VWrPyUn4F7Ta1hbX Wtq1qHXoQOUphRqTSm3fkn9uJqnicPSbpxjZ8XF+KV76fHXuOzVKYpeQHlt5pKnwqWQ7BuoxPIbg lEVs21evQHPytkCZru64laV0tvrC3TP8AK4Yep9Jc68oa1I+Gpljg6dZ2o1Lvk1Z+q+Z61xf0bCi atWoviNyTGSx9J51KyuuKv417inRzlaGcZ95isa1GjeCpxNHFyT8VQeUe0+ooNTvKqikEZf4GzKo yWId5PTl9S+rCWCVqau/7cP/AB+u/cSvBrOvQC17IMp2TTtiYLvh95w1jR4beu1Pm1GqdQz2zPom K0KTVcMNHlQE9Z4dze07Om9evVKH7vrFSFP33oyiliK6fRx61+D1ueTS4vVpX+L6i1JiujI3E99W DUlWm6sH3nzdClU45dVmquaFBQDoPxP/ALT6GhTCIFVV0qMAE4lFNyd3wLMfCnHKkrT4papfnLU6 sMDHhpk7DBzAXwUBZHBPUHElKepixpNjGRpM5uQz7BgOo5y1Pgec+ZVQCcsSB3xGTUYam+ZlnYBd KuxHUEQoI8qsp1d+km7e3E5JVS7baSF+WZ0IGsKqdN9BkMPCTemmeWc5lVXSmpkf3BxNlKmoIhsV CB5Qrg+pkB2RMBmB7SoGWy2QO86DdgxqjPTUJcQQMIuoOpJ6YkU+THSre5knVVbGV268pVxuECjP p1gEouolihK+nSV+Juun85bGAE0sH6yxIojCO2rqMYi4Jwo8uv21dJV2LHRlT6gYhNlyGXJ6ESdO hSWRG+cjYEFDsgQE88g5ksFXy6HU+8toAGTScexnNG85OplHpvG42Ll9C4Wo/oCJRHI1HUuf4hnM io5Y/EWA5Zlc5AElLQN6gnJzCqzHCgmCpU4OPlLMNCgFWVveSQUxvLsQBpViV9ZVTg5BIPTEiSQS GIBG28iSFLZxjaFGTyJA54gEYOM9JYAYOrI7bSGIJ8oIHYxqYrpycDpAJU5cEkD1MEl2zjf0EBds k4khs+VBjMgk12VHBLsPabZzop4dJV6zpM0ndmuEbKwiIkHQiIgCIiAIiIB4sRE8U8UREQBERAER EAREQBERAEREAREQBERAEREAREQBERAB2GZisPOa9bfzvt7Cd7qp4VrUfqF2kWVPw7OmvpkyiXWr Jclf0+pnl1q0VyTfp9TvMVwumqfWbZnul2DTfhZWqW5l7Ms32dxTel9VuMaT8LdjMEcp6ZMJOLuj rXoNQqFWHse882/4nRsU8x1VDyQc5biHHjVoLZUBT8QbeMxwEE8KvSpUeTtWrNu9Uj4R6TDiMXa8 ae/P83PocD7GUpRqYi+V7Lj8XwXzfBFat3UvkY1qjIM7AD+QHf1nShw+naUfrN0m+fs0+8TNdhT4 fbJ4prI7jlk/DMj3te7vGqU6DVGXampGy+pmJxSSnUd5P4nsqrOblRw0XCmt37vwXq3/AL7fVEta AuKtc0a7fCq749MTncXF8KKGu7rSbqBhj6TpQseIM5r1tCvz1Pvj2Em3sm4mWqXNZmpocIRtnuZ1 km1lgmr/AJr/AKKemoxk6lecZqO7te19lHTzfbY1cMtaVtS8eq6+I478h2mx+IWic66Z9DPn61O1 sLsqc3FMjlq3Uy9e3rZpqKdKk1U4VFGT7ky2GIlTjkhFafEzVvZtPE1VWrVHaWqei05W1ei7Drec So3N2KdQt9Xp76QPjMzG/alWqVaFOrRptsRjPzn0NtY0bemoCAsBjUROz0Kdam1N1GlhgzqeGqyT nKWvd6men7VwdKSpQpNwWmr031drbvfU8BXtyfFuKdzW66nHlEUKuLs3D2dRkH7oIuwHea66eI9D htNiVUA1D6CesqhVCgYA2Emnh3J77dnH7HWK9owpwu4t576XekeHdfy7zB+18KAbS5H/AISBxen1 t6y+pWek3QY6TzOJOaz07Kn8VTdyOiy19JCGbN8jz6H6WvVVPorc3meiW7Ma31G4v/GuQ4o0/wB2 ukkH1norxayblWA9xia6VGnSohAowBgbSjW9F/ipIflFKlVi201d9gxGLwlbLFwkktFZrbutx3ep Rb61f4a9M/OZL65NzWSztnGSMu4PwiTfW9lb2zVDbpq5KAOZnG14NS8MNULLVIySpxicVnWnJU9O 004SGDpQeJvJcFdJ6899bHvcKo07ZDSpqfDRRnGxzNxIxnU4yccs7Tw6HCq1Jl+r8QrIWBznzcp2 xxqg6qlxRqqN/OuJZSqShBwyPfh4lVKhCpeSrJu73unz4/U9atWSlSatUrKFXfzdp41qlTi9+t5X A8BCfBQ7Z/iMxXl/d8RYUqtDVRot9stIfEe09C343YjyOpokDADqRiTOvCrJJuyXPi/t5m9YSthq TcFeb3trZfV8+R6tTyjGkAjsYPlULhgeuTOSV7eqoKOHUnYq0tXrUbeg1apUZVUZzibZTjGOZbI8 jo5ZsttWZ7y+p2Fo1Us2tjgIPvGceFWjUle+uGVrmr0IzpHYThY0qnEbr9oXJCou1BGHTvPYILuE Gk4+QxM0L1GpvZbfX6G6q1h4OjD3n7z9Pr2kNSRqBNWjSqBvxbzhT+jNJsVLZq1rVP3qbbflNaqK lX92AifEVM2cQv6PCuFtXJwWXGknfPQSMQqdrPc4wtStF2pt68OfwPmb2+4lYVltK1SlcjcUyuxJ mThzUuI3YqX9wDcA4WlU2Cewmywtqr1DxC6JFxU+FfwL/vNVxw61uqJasilz8JGxEyKlOVp8OCZ6 E8TRpt02rN7yjz5Ls7rXOlMr9arImnSMbgczNgTAANIMO6mfOW1DiFk9WpbMtzSU4NOodz7GbqPH LdKNWpcUqtFkG6EYx7SyVZLSSsZKuDnJ5qTzrTbf4rc9arhV0BHHY5lQQikh3BPpPKsa17eXQun1 UbYfAnMn1M9QnxCQauw5apEZ5omWtSdKWVtX7OHYQm51F1B9ROyJzd1RsjbfEocudOpCO4GIqtsF KLkDYgzfRpZdXuyhsox8R/KmPQSWwWwAwA5jnAARMsrZPI5llIRch3BPpNByVdsLpV2I7EYklyqA Aqc+m4hDk62qKG/iGZAVqjE+X+kAnYUgdCnPXO8gJoGaiN6dJZE8Rs+GSOXlhghfAL6e/OLglGCK TqYMeoEgHUQ7VVz/ABDMhnOQgqHT6yajnAGpGz2EiwuFy7k4RsbdpU+ZwopgY6L1lnIVd6ab9Qcz j7SUGdKhAOAGU9QTKBiucHGZIAJ85YDviTTAznUox3EnZEcSMAKGDAntLqNKFiqsD3MozF23x8hB 3YAKM8tusAgc842HPEHcnGcQdtsEHrJzpHlJBPMQCAMnGcesltvKCCB1ElTpQ4I36EQvlGoqGHLB MAhyMAaQPUdYIKjcEE8pZabHzFCV9IXQG85Pyi4KgHOeXrL+QISCNXrKO5ZueR0kE5x6RuASScmX osqVQzDIE5ydsDEz4qr0dO63OJyyq56iXVJ/vYPrOoIPIgzxpZXZeTETzo4t/wAkdRxb/kj2Inmp eVVGCQfed0vlJ8ykS+OJpsvjiab7DXE5rXpvycTpnMuUk9i5ST2ERE6JEREA8WIieKeKIiIAiIgC IiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgGLiJ1JSo/wDccA+02zE/2vFaa9KaFvzm2UUtZzl8PAz0 utOcvh4fcTnWXVSM6SGIVSScADczRF5WmaNzzHdaaF3YKo5kzw7nida7rCjaDCNtk9fX2nHid8t3 XKBiaKHyqPvn/aecn1h9RUsuo4OkchO8TjHJ5Ybdh9j7L9ixpw6avbNwT2X1f+t9vWqfU7al4VJB XufXfzGaLPh109nUNxXpWwA1MT8TfOY+GLbUKtSuWytMeQHm3czVUNS4pm7uwUoJulL8XbMQSks7 WvBLa3Ns6qVJ0puineLavKSu23sorb6cdjBSs6FzdJRoK2Obu3Miela1Tw6r9VuAAjHyVcc/Q+s9 Lh1rS/ZtS9qMqXLnW4O2F6ATy7qu3EVanSQCgu7VXG23adwpqlFTWknw7DPia8sVVdCWtJaNt7Pm nz4W4rgdeLXWiiKFNvPV226CcqFrdXFFabH6vbqMaV+JveV4QErV6lVyC4GEB6L3ntS+nDp30sno +B52Jr/oEsLTj1lq2+b5LsWnHsMbcPtqdnUpBAqkbt1mHg4Feu1ao+tqY0IOw7zTxOqXKWdM4ar8 R7L1nGktJOJ0hZsrYTTUA5Y7zmeVVY5VotPzuLaDqvBz6STzTTafJLe74ZtvgevKV6621tUrNyUS 88y4Jvr9bZf3NLzVPU9BNNeTUbR3ex5WCoxqVbz92Ku+777HThlBlptcVf3tY6j6DoJ6AGSJAGBg SV5zpRVOnZFVas69Z1JcfkuXwRSvVWij1HPlUZmDhlJqhqXlUeeqfKD0XpK3zG7u6dkh8vxVT6dp 6SqFUKBgDYSuKzz7I+f2NU//AMfD5f5VNX2R4eL17ki52QCVlm547TFxG5NvbHRvUfyoPWWZlCGZ mSnSlWqqnHd6HAf4/ieP+hb7+7T0FHmYzlY2wtLNU++d2PczrTH8zKqEX70t2zXjKsZft0/dirLx 1fx3N9NfDNFwSAQQTjrOHE71rS2eojBq7+RFIySTNVTCrSw50IfvdJ5VsDxTi71zg0Lc6afZj1Mi Un0sqcd215al+ApxzSnNdWNm+3kvi/kbuF2P1SyUHSzHzOSeZM0C0pV6f2tsHB9J0rDSmnQu/UHM N5EB0sNtt5tVONlFbI5nVnKbqN6vU8utwOyqVSaVJ6ONso2MGeVVtLi7unsbe8qVaFHBJrctXae5 f331DhzOrt4r7IoHMmOFWgsbLU1RWrP53JGSSZhqUKdSqqaVktXb5HqUMZXpUXWnK72jfXvfw9TE eJX1qBTubINTQY10RmabbjFlWVvOoc7APsRNulnGry5J5ZxOTcNtb+tirbppHMjbHznU5TpXale3 P7GZVMPVfXhZvivo/qb6AS2tTc1SAg3JJ5zw9Z47xBbqsGFlRP2akfEfxGYuJWC1L88O4dXrLQVM 1FdiQp7YnZb2/wCHUxQubXVSHNqP+0xRbnK9RaceP5Y9BUFRp2oSTm1pfRpP1fft3nsDNV/MwHv/ AEhiar4BXbYdJktuJWtwoWjXQudirbEfnNLeSnuqH1zPQjOMtYs8idKcHlmrM4UHWlTua1TAp03J Yg9Jgo2x4vXe7uUYUSNNGme3cznbU34rWZWVvqVJyXIO1Rv9p79JURRuyY5YEyykqru/dXzNtV/p LqL/AHHv/wDFcu98TxzSv+EDNpUe4odabbMPYz07DiFO9ok0yA6/FTZN1mhGLOSag7DUMw+AxVdG TzKjGZpw+FcGpfJmSrio1YPPHrc1p4riAAfMApUcwTzhUzlzTJX0kEZcJoGRz0nnFQqPKFZT6mbz GR5Wb7wX84dyfKGJUcsyQxRAFdgTzEsMU1JV0YnpiARgthFZCBvnlJYEnQKa6j+E5hEwMsEIPc8p IwclUbQO0gkN9nT0hHUnrnnIV9KY8Rwe2NpC6CclnGDtgZlajlj8RYDlmTYi5dWIQnWmTvgjJnLd m6ZMstMtyI+ZxJfygKVUHuDGlwQtJzg6CV9IAUvsCF/Myz6VGNLqfUyisVyQSD6RqyC1RydtbMPW VDkKV2wfSANWWLAH16yVUtl/LgdCZOiBGMLk4OZIAC5ZTvyIkomolvDJX+GR5S/3gv5xcAAYJYkH ptJXzNqZwCO/WRUcscayy+ss2SqglcdwJAIGalTOF9uQhsE5wFHYSNQX4Rv3lJNhcu1TyhVyBKRE mxAiIgCTAieNjamaplXAz1Hd2ERExlYiIgCXSq6fCxEpElNrYJtbGpL2oMagDO63tNueRPOiWxxF SPEujiKkeJ661Uf4WBl54oOOU6rcVV5OfnL44tfyRoji1/JHKIiYjCIiIAiIgCIiAIiIAiIgCIiA IiIAiIgCIiAIiIAiJzrv4dB37AmQ3ZXZzJpK7M1l9pXua3QtpHym2ZrBNFnTzzbzH5zTKsOrU1fj r46lWHVqSvx18dRPlfpBxdqoNraEkDZ2H9Js45xfwT9UoHNQ/GR09J4Suool9QYocL/E55k+glda pfqo+x9iezMmXFVo3/qvV+nic7dBScEprddlX8T/AOwm65AsLPwy3+IrnLt2Ejh72lvTS4rVlaqd kpjmPf1lFp3d/dtdJRVkzhC52wJfRt0Sy6yfy7T0sTNzxDdTSEd29MzWyV+Cer5/BHe14WbiialQ eFtimBzHqZwuLqoXWjckMtA5bT949Ja9q3FI6Kt0zPzKUtgB7wOEh+G/WSCbg+ffqO0ukm7wpLVb 9pnpyimq2KmnGTtGy2vybs7W489S6XVKvUWre1l8MHK0E3HzxNnGL+2vaFGlw6i+G2qU0XcATpZ/ VGtErrTpoMb7cpksb64p8RrXNpQFRn8ilh5QsskpRilm97kruxnoVKc6kuo0qeybSin4fFu7ehmr 3T21elc07SpTVBoYNtkTunGbuuG8KyIC82Y7CehdcCevbNd17jx3YE4XYIfaed9YLcGpUU2qVD4c i1WDd5WT14fiOn+krRilTU5JqN7ysk7u++tteRmFrecQqNdBQUfYAtjIm+jSv7ddNK3t0HvPSo0h RopTXkoxOk008Io9a7ueTifbMqn7ahHItlrtw4nk17niVvRarUWgFHPB3lLOlxK3o6lp0mNQ6ySd 53vz9YvLe0HLOt/YT02xsAMYE4VJzq+89Pxnc8WqOGiujjeerVuF9OPe/A8zx+JjnaofZpD8QvaF NqlWzCoBuwflPTnn8TPjNQs151Gy3+kTuvGUI3Un8voVYOrSr1VGVKKW7fW0S34mKxuK9APWqWlR 3qnUWHbpNq8Xpg+e3rr7rN6gKoA5CWABySOknoZwhaMvkcVcbh69RzqUvBtfUwDjFmzbuynsVMyU 7mjd8UapUqqEo7IpPM95s4k6ULN2CrrOy7dTIteF2/1amlSirNjc43zOJ9K5Zbp21+hooywlOi6y jKLleK1T72tF3fE2mojKNLg7d4ojOkZ5mYKnCLUAsgdD/Cxk0eF1kdfBvaqH+LcCWxlUi1eN+5mb ocLNdWra74x+jZ6HHrlqViLelUVq1YhRgb+818PtFtLKnTUKQoycnnPACX13WrXdN6dY0c0gzjGr uQJ6I4hxFFVanC9QAzqpNmU0K66aVSatdaacD06+ElGKoU2nxetm38eS82eqF1ODoOkbnElwhGCX HpjO08tOOWivitSuLcn8amV4hxqk1uFs7kvXqYRfTPWa3iqeRyTM8fZ+IzqDi128PE5qf2nxnUGz a2x0pqGxbqZ7VUlitMFCO4GJn4fbrZ2a00qU20Dc43JPOd0BCNUKq2eWTOYPo4OT95nOKqKc1CHu x0X527kOQNii5AxkGWvLinwrhj1WyKrL8P8AQTpbW+qoWqDSlMajmeRc1P2txjQ2fq9udTYGQX6C Za03JqMfz83LMHRUpOc/dWr7vvsW4TbNb25r1i3j1TrfbqeQm5Dkl2ZT31DMOxZtGvYdT1MmocEI CjdTtiaIRUY5SmrUlVqOb4mK64ZbXZL1KNPWeTKcETwrqheU6xsbW4qVda5Knmo959BdV0t6DVKi qFUZyDmYOGUm0VLyujCrX3HovQTNVhGclCOjfLkenhK9SlTdSo7xWyeuv23KcH4jbW9Bba4V7Yjl qGx+c941RUQaKpdTMdC3o3HDlp1hqU52K7TKnCq9oxq2F14eNxSq+ZTLaVKpF5pLMl4mWt+nr1HZ 5JPnqvHdfG57R+yo81JbpjcTxvrlS64kKNv+5pHNV+57THe8YvKmbarSWhXY4apnyqO89jh9rTo2 qJbqGUDdl31HvNMavTSyxdkt/p9TmWH/AEtPpKiu3pHiu/l3eJqRcKWZGI6EGQoByXLDttJONQAD ADmOcmpUyMCozDqDNZ5oVizamqDI5at5BDVH+7gdeQllZmUKCm/pylqh00wuhMDlg7yOI4FdnfSK fLnpPOVfAOlVZT1BMgKyjUVODylwFXza3De0kFEJGV16c85b90PK6Nn0kK58TJYZPVhmQSar42z+ UAspHhklEOOpO85gE5IGw5ywRmOFXOOeJJ06goVh36ySCAAzb6gv5wPMdOvCjlmWZ9ICo7Y6gjEE 6EwHRs+m8gkMS7hcqcdRtIqEfDoUEdQZVWC5ygb3lZNiLnRsKoAVlJ7nnIp6gSVJB9JGMbsc+kFi duQgEgqu+MmVJJ5mQdjzzJIxJIIiSRgYI3gbDOSD0gEREQBERK6s1Tg5MiTsrkxET59u7uzIIiJA EREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQBERAEx8RJNuKa/FUYKJsmKv8A a8RoU8ZCAuZRiP8AHl56eJnxP+PLz08TYq6VCgYwMTHxS9FlZs43qN5UHczbPjeL8SN1xNlpgtTo jSO2qdVZ5I6HueyMA8VXSt1Y6v6fEwFw1UgA1K2eQ3LMec9Gz4b+0LvODRoUtmC9+sWSUrZbi/Kj KroT1bqZtQVFtaPDaB+3rDXWcfdB5zNGPM+sxeLkrxo6Pa74aXk/gvm7Hl3tvQapizpBaSt4atzL t1M00rq4C/s+iqLVU6dWeQ7zpc0alTiNOzsVGm3XTnsTzMm8sV4fQStSP2tJssx5t3mvDKSzOPDf u7DHXr0qkadKpq3rFPV34OXf68kc7i0Sm1G0UlqlVtVRzzIE23N/ToYoUV8WrjARenvMFNLjiN3U r0n8NPg1dQOuJ6trZ0bRcU18x5seZm+ipSbdNWT49nYeVjZ06agsQ80lq49r5vhbRWXLgfP1Uak1 WlVBV8hqaKdsmfQ2dAW9pTpjoN/eebdvSfjdFWOyYz6npN9fiNtbnDVAW/Cu5jDxhTlKTe2h17Rn XxNKlThF3kszS8Pv8T07O6Fu5DrqpvswnhUrJP23XaiddvSYsD0BMirxC6am1Snb+HSUZLPz+Qnp /R2otvZlLlQRcHWxxuCZ3KUa1SKS21KqMKmDwtTpGlm6q1vZ8b27PMtBOASek73NsaD8wyHdWHIz y+KVjSs2C/HUOhfczVUlki5PgePRoSq1Y0lu3Y5cNBuLmvdnfU2lPYT03OWM42VAULenSG2kbzqe cqoxcVZ7/UuxtZVarcfd2XctEJ5tl/ib+vdHdV+zT+80cQr+BZuw+I+Vfcy1lb/VrSnT6gZPvIn1 6qjy1+hZR/Zwk6nGfVXdu/RGiW5J7ysVXCU8k7KMmWy3Rhim9jzLn/FcUo243Sl529+k9VdgTPM4 UpqCrdt8VVtvbpPTOyD1lNPrLN/Z/L/RvxrUJqitoK3x4/PyOb/AfXacru5NpavUX4yNK+52nV+g 7mZRTN7xmhbjBSl9o4J29JNduzS3dl4k+z6SnVi5bRvJ9y+ux6thaG04fRp6ELBSzb8zNNEBLVWZ XO27Ay+nVUP2R5YGk7Tim9MKQwJY5HbedOKhOMVxTXhYirN1K+eW7uWVEKEuDv6ZnhULO34hxa5y FW3pDTsMZJ58p7HErtLSxqEVDspwp2zM3CaDW/DEBKl6x1vtvkznE2lUjC3az0cLOVGhOre19F5t +HmcDwKpSGbW9qU99gWyJZaXGqLhRTpXSr+HYmeqw0jdVONs5m61oijb+KwZXbueXrM8qairp2+I jjKknaolLvXrv8zwrjjdejZNaNY1aNwTgajkE+8pwq5tKFoKdK6DVidVQHYljzMm+q/XePUKBJ0W 48RiB97pL3XC7K7c6kUH8Q2J/KV0oVLue9uZurToKmqTTjm1017t/Hc1h9C6g6NjltOQbUWYqp95 5T8MuKDlbO9fAOwqbgyr3l/ZqWubemUUfvEbbPSXSruKtKLTMscGqj/amn2bP5+hN6Te3yWSg+En nrY/kJ6BKqh0lhgflPJ4TWtkRxXqlLqo2XD7fKes9FzRbw2zkdOU5oRlNdIt2WYz9ucaNrKPzfF/ nA1WYLWlNdeFAyc8hL3lytC3Z3ZfDQZ2EWrFLGmMpnTuMZ3nk8QLX1/TsFwaa4qViD07T0ak8kLr fZd5gpUlWrNSeiu2+xDhtoLilVurukrNc7gHfC9BLVuF3HD28Thruinc0ahyp9u09WmEG2jygbBe kkaWY6iwHTrIWGhlSe648TqWPqOo5L3Xwe1uBl4fdVq1IvVpPQqA4IPX29JuRAPtWqL7Ec5QgEhd ZCdCZIJ1BPKyjlmXJNKzdzLOSlJtKy5Aq1UlhpA7ZxJRQwJ8Nj/pMirgeXQoPcHMjBRdJVgx5bzr gccSCw1DRqGPXMmpUJ8odiOuYGEXUGYP7SynSC3iISd8EZgFdOPKrq2r+UlhoUAohJ6gyE3LMVU+ hOJX438q49BAL6dCeZHB75kU2C5JdlPoJVvMdg2PzhtI2ViR1yIsQQWLNknJk71G6Z/KWIIXSpVh 3xJIFNRsCT1zyk3FigQk4O395ZmC+VVIPIxjAy6tk8jmQoAyWLA9NoBBwF2JyeYj4QCCCT07SVUN lmqAH1kqDUYt5duh2i4KgYXVsRykAHGog6ZbBdzpT5CQ2CcICB25wCBud84jOds7SckDAJ35iQQA Acg56dpJAPbY4kRGDjPSAJMiTPNx9TaCKasuAiInmFIiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIA iIgCIiAIiIAiIgCIiAIiIAiIgCYrb7S+uKuNhhAf6zXUYJTZjyAzM3Dl02gY83JYyip1qkY8rv09 TPU61WEeV36epw41ffU7MqufEqbLjp6z5ptCrSp0yMINbsBzY7D5zvxWu17xNkD6VQ4BPLb+/Oee LoJjSjOwfUc9hsJRUneR+iey8A6OHil7z1fx28Ff4nevSFs4oLWqMqeZh0B9PnNqXtxww1BVpr49 ZAyvncD1nmJSr1alW4aoKaIdWrGdTek2XFlUS3p1rqqz3VcgFTvpWcpvdGqtCk8tOtJO+/NvR8NL cX8EerY3VHhvDPrVywNasS+BzJPSebe1TdpUuriouwzToKc49TNnCeC2VWzFzcE1NXLUdlmfiNOz q16FHh9NCQxLEcjjpNMHKyvx4Hk03h1ip5LuSbvK1kkuC102tfccL4laULIU3qKhU4Pr6zrW47bq QtHNRj1xgCY7LhtOrfV6d0qlkw2F2G838Sp0rfh7JTpqpbCgAd56FOVdUb3SS8dDNiaXs941RtKU ptPfTXXldnhVK6uTXeqQ5qaioX+89ehecLoDKKQ3fQSZfiFBaXBgoUZQL0no01RqSHSu4HSKNCcZ tXV7J7fcjG+0KFWhGWWWW7VlJLRWt/Ht0PI4jxChcUaSI58Nn85xvgek2LxaxCgCrgD+EznRVa/G azaRppIFG3WegaNM86a/lLqaqybmmuW3L4mLFTwlOEKMoS0V91/LXXTlY62nHeHVKBta9ZQp+FiO RnkXlai3GKSVKqilSXWCTsxPKb2tqGCTST8pTglrZ8Qo3JuKaGo7/ZMw2wOkVVVbUG1r6FmElhMk 6qUlZW3X8tNNFwudEu7Zs4rpy/FLCrTbk6n5znV4Ra0yyPbKCPTEztwiyxnwyPZjLE6127Lx+xhc MFos0l8E/VFK5F3xWhQBGin9o39p6U8Ow4dTujXra6iANpQqcbCav2XUX4L2sPc5lNCdRuVTLe/a bMbRw6yUOltkXFPd6va56QGTiYeL1T4IoJ8dZgg9pVbPiCnyX2cdGWYmF7W4iApp1KlAbluW8Vqs msuVq+n1+RzgsJTjUVRVItR14rba90uNj2qNIUaKU15KMTq3PHaeYLniVM+azV8fhaDxSop+1sqw 9hmWqvBOzurdjM0sBiJ3kmpN8pJ+ptqOEwTyGSZX6PKav1i6ZNTVW8pPQTy7/iaVbVlQMhbynUMY BnrcLvrClQVBXTAGMZwZzCrCde99F5m2GFr0MN7jvLR6bJa/NteB7IAVWOhxk7HM4W7MHqq1Q+Vt sDaXo1qFQAirt0wczkagp1K7hvKFDZPWW1WlOEuT9H9jDNNSS7bHj8UY3vFaNqG1AkFz6Ce2oJOr ykDbBOJ4nBlNzdXN4wB1HQhPae2VOAukEt2OZVR6zdR8fI9TG9TLQX8Fr3vV/Q6W1H6xW3XCKMti aK9TFJqj5RFXr0A6SdHgqLfDBm8ztn+U8/6RXJp8NS1QnxbpwgHYdZxWn1bo4wtHPUUOf4/kYOEk vTr3rkh67kgHt0novU00s6lLHoBynOjTWnTSmhACDABE7JSao4qEKR2JxLKUMsFHluc4mt0lWU+e 3dwOVOgzYJAKn1mHiarcX1pYqjBc+JU36CewSu4FPAA3CmeNwpTdXdzfEEhm0J7CcTXSTVJcd+46 w0silX/qtO96L6/A9CpYWl0pFxSBHIHTPNuuDta0ajWd7UpgD4GOQR2nusQiaQWOeh2mW+OizZQy sD6TbPD05LYpw+LrU5KKlpyeq8GeV+0b+ztwLu3ptTVdqiHHtmOB1qDrULOv1uqxZwdj7S3E1Na4 s7AYIYh3wc7CehX4VaV01V7c5+66nB/OURhUz3g7qPPmbalWj0Vqkcrnq8vJPTR8/hsjWwAGArBu u8sBTRdWptX4cTx/qXE+HDXa3Jqr/wBurzx7zlW49VWk4r0KlO5xhFIyGPoZc8Sor9xNfnMyLASq P9lqXmu9PU9WnxIV7mtRTQfCAycdT0nZFONWlWz0zMPBbUUbMPmnUqVDqdtXMmbj5nChACPwnnLK Lk4Jy3ZRiYwjVcYbLT6ssE0qTUpt7gyEI1FtTrjlgZipzwFcdwTmCwVdKO2/MEYlpQQXLOMtkA7E yXJqOFyp9RtBOhMB0bPpvCroTUVRge5gFGGnykDPcGWcBQBoZW9TJFMqCXptj0khFADOzqR6RcWK qSinDMGPTElQKY1llLD7svrydXir/wCQgBnOSKbD8pFybEEMTrYIR2zIVNizUmxzGJOkM2PC5fgM htOrTh1775gEAKSc61HTbMFtbaTVOkctUs9QgeWo5PqMRrIp7Mh9NO8AMGqeUMhA6jaQw5IKalu4 OZVCApJRWx3Mpkas4wOwk2IudHCovwOpPUmAVQZDuGx2nNjk9cesFmYAE5A5SbEXLLuSxYAjffrI DebUQD6ShZRzIlDXpjrGhy5JHViCcgAegkTgbodFMoK7u2lQBmcupFI4dWJrERE8GrU6SbkUSd3c RESsgREQBERAEREAREQBERAEREASj1adMgO6qTyycZl5wubSheIEr0w6g5GehkxtfrbBW4nYMp5M D7GTkZx1nltwCxLhwKykDA0VWEfsUIxaje3NNsYzq1f1mjo6D2n4r6Nndocz1InlDht9TcvT4pVZ j/3FBH8oW34zTZj9dt6gJ2U0iMfPMfp4PaovmvQZFwZ6sTzBV4yuxtrV/XxCP7R9fv6Y+04Y7f8A 1uD/AFj9LN7NP4r6kZGenE8ocYqombjh1zTPYDV/SF4/amnqalcIccnpER+jr8I37tfInopHqxPO /bvDQuWu6YP4Sd/ymlb+0ZAwuaWD11CVyoVY+9Fr4EdHLkaIlVqI3wup9jLSppo5EREAREQBERAM nEXK2jKObkKPnK3lX6lwxioJKrpUdcxdfa3ltR6A6z8p530mr6aNKkCRkliR0xy/nMubrznysvzx LfZVD9Tj1F7XS8NWeEKKPa1rvXrctp0k8hy/OcWZ2qYxlFXAJGMgdDOlygtHCBgFIViRv5gJZ3Jp 5fk+nfr6/wBJnfI/SoSfvbp7di08jRbEJSosw1on7ukOb1P+J1d3t+KU3us1awUtpUZ3PJZx4Y9d ruqlEIax8wZuVMHmfea+HXdvaXFzUrs1WsW0qAMk46iWR1SPNxKlCU7RzO2y3ebyWru+PckTwiyq X9Ooleo9OjTqEeCD19Zqt7ekeL3HhqFp0KYQAd5msLi+erePbU1pqX1Man3Z14bwz6/Re5r1qgWq 5OhTgGW03ZxcVqYMY2nVlWmoxaSstbOVm9Fxdnq2Z/rdC34xWd6g0lBuN95zvL0Xda3WhTd8Nq0k YzidqFnRocbrU0pjSiDAO86W4FbjFeoB5aahBPSjnnHLfRv7mZyw9OfSxi24wTu3bhZaLv5ma/fi FSzc1KdOlS6jOTN1lSqUaPiVaxcFcgEYCiOKqz2DIgyzEAD5xfv4HC376Qol2TJUlNtuy+pk6Z18 PTowio5pNWS/487s58IBajVrnnVcn5T0Zws6Xg2lKn2UZneaKMctNJnm42qquInJbX07tl8jNf1f Bsar9dOB7xw+n4FlRXkcZPvM/FTrFC3H/UqDPsJ6AGAB2nMetWb5KxbU/bwcI/2bfwWi9T1NS8Qt gp0rXXl/EJ41+5trWsx2KqfzmkMabIyncbzl9IKtO+tbdKYxXq1ArqOo7yJyy0mycJTVfEQjLmr9 y1Zw4bS8HhtJepGTNMnToRUxjAkTujHLBIzYmo6tWU3xdyc6UZjPN4UNYr3B/wCpUOPYTTxGr4PD qjZ3wcSLCl4NjSTrpyZUutVXZd+hqj+3g5P+zS8NX6GtdgTKyx2UCVl8eLMEuCPLrKtxxulTwCtN CxE9anw+xrW7a7ZS+diBPL4f9re3dx/FoHyn0FqAqKdTDJycCUUIxlGU2r3b+h7FerUp1oUoNrJF L47v5sxVOA2CoWp+LTf+EkTyuLWLcOtdVO9rN4gxpJzPp3Y1GCtU2zsTPA40zXfFbS1GCNe+Nhgb zNjqMYwSgrO6NuCxOIqVoqUrpau+ui33IsrLilpaUxRqUHTGdD7Ymy3uuLW3+IqcNFVAdijdfaeg tPUy09IX1HaaXxVqqi02VEG4HaWOjkj1ZNB4zpJ3qU4u/ZbysebR47QVs3dtdUWY5LMhO0w1uI21 /wAd8bxgtvRTTR17ZJ5z6W9ri3snZjgkHSCvL1nzPB7Cjc8PNa4po2ty+GG+/aVZKrko3u9zTCph lTnUyuP8dHffl8O3ie1TZWUBXpvnckGd2AVceGuo/DpOZ5A+jtswL0nej1JR+XynMcN4nTGq3vmZ R0qLn+ctz1NI5fD8RglSoT1jUt3pryud+M1mteHOoVhWqnQm/UzXw6gtlYU6YdlKjkBzM+fduIV+ IqtdFrNajxAlPkf+Z6LcfRnC3VGtQA6suwllGpCM3KenDX5l9XCVVQjSpdbi7Pnt27eZ6Y82WLAH 16zNfktbMxxjIz0kU+JWdUBKVzSbPyMzfSCt4fDQiBdbkKpU5zmbZ1o9G5J3MNDDVOnjTkmm2V4Q hvb65vzTJTPhpjsJ7K6NecMF7c5ws7ROH8Oo0dDB9O++2Z2DlaezuD2xtOaEHGmr7v1GMqqpWbjs tF3LREtUJYAVCR/FPHvR+0eO0LUFGp0B4jkDG/QT1DWFKlUqs6jSMnUMzzOBU2qrXv6igtXctg7b dJzWWaUafxfw+5ZhX0cJ1+Ssu9/a5ut7GhYK4pUx5zk+bOJoIVUBKOCeuZGhnOoUzp7CSAjE51he nWXxioqyMk5ynLNJ3YptpBJd1J7CFOW1mouf4hmTqBYKKnlH4hJYsx0AoQeoGJJwNLMwYhCO2cSV p6yT4JwPwmKmmmuCiEnkVOZDMAoLK4JGxztGvAnQnUgJADj1O8h3LEL4rY66hKI5VT52XtiQrEvq ZwD3aLEXOjuQuzI3ssg4WmCUTfrnecHrLqJLD5Sj3VMnZce0aI5c0t2aE0hSSrHHUGVViGyCR6zI bo76RKG5qdDjMjOit1oo2sxY5Zs+pkM6g4LDaYC7HmxlZHScjh1+SNhuEHXMoboZ2WZonLqM4dWR 2Nw55YE5mo7c2MrE5cmzhyb3YiIkECaLZMkuenKZ5vpJopgTNip5YW5hF4iJ5p0IiIAiIgCIiAIi IAiIgCIiAIiIAiIgCIiAIiIAiIgCQQDzAPvJiAczQosCDSQ5/hEzVOEcPq/vLOi3us2xLI1qkfdk 18SczPObgdgfhpNT/wDrcrK/sWkv7q5ukPfxSf6z04lqxlf+78yc8uZ5R4VdBgy8VucjkCFx/SDa cYWoCnEKJUDGHpZz/OerEfq6j3SfwX0J6SR5mrjNP7ltW/8AIrKi64tTcmrYU2XoKVTP9Z6sR+oi 96cfmvJkKfYeUvFboFvF4VcIudiCDn8jLDjltyejcoexosZ6chiApJ5AR0tB70/Bv1uHKPI8Ojxv h9TiNao9ytMIoUaxieRxfiVvecRWpTq66K4BC9R1n0vD6FNqDVWpoTUctuony934NTidf7AOEZsg L8p585UXSTimru+6foj2f+lYRc5Vba2b8TE5Qmpo8oK8jvkH+nSaK1wgt7Y8sUzjuTy+U866VKa6 FGlwxDCd6FvSPkuCxbA0vkkKDM1PI5Wbsudj7utTtTjU3tw+FjZZGi9d0Zl/cnSKRIJPY956vC+J 8Ks7KmKtVfG+8dOTPCFpWW3rutTNNG0hkAwfTPObktrZ6Xlu6Suo3WtRwZrhRhm6tRfFNeh4uPUK sLVFKza91p7Lj33NNLiNEWXEGR8tVc6fblmb7Ti9paWtOgFqMUUAlVzkzwBwyoltblGpVPHfA8pU n39J6DcHv6ZDLbqiDnornJ/lO4Yaq21GUXbt+tjHi17PcctRtXbfgspC8Rpnil1cBKmGAAGn+srw +/SjTqO1KqzVHLEquZ54W5p0q1daFw9IkhnLDGeW/UzvQq3NCkq+JXQAbDwNX9JqoUcRdRirtXel nv8AEYmng+jlro8q1bXurbZ9h7ltdpd6sU3XT+MYmbiZ8Wta24+++o+wmFeJXSsQaqKB1q0ys5ft F6nEVqK9Co6LjZvLn0M01VVUFGcHq+R52HwSjXdWnKNkm1rs7abpcT6UbDETyhxS4ABa1Ug9VqAy 68VP3rSsPUDIlnTwW918Gea/ZmJ4JPuafqG+342o+7RTPzM9KeHacQo0rq5q1dQLtgEDOwnoJxay Yj7YD3GJTSr01GUnJXbZqx2BxOaEIwbUYpbfF/Ns2tz2mAVW/wD1BQK7+AurfuZ3F9aufLXpn/ym ThjLVvbquWG76Rk9BJqyi1GKd/sV4WlUpdJVlFppWWnF6eVz6O7pJcp9YoYyB506iedO9tdfV6+s YYHYjuJ3uqCORcUCDTbcj8J9ZpXViYZLO7rc8Hi58Q29sPvuM+wnoAYAAnnMfH46O1FM/Mz00557 Silpml8PD7mrF9WnSpdl3/5P6WDc/aca9QUrepUP3VJnSeXxe4JoeBTGdbBS3b0llW8KUmuCKcHS 6fEwg9m/kTwutTpWlNGJ1uck46mfRW7nwlAcjHTpPCCDxbaiowEGoz3LE5pFtSrg8iMy2FOMacI9 hdUqdLiKlTm35nSpU0gnKkAdp8/bfb8daoyhhSTr3M9i6qE0WOBljjtMP0ct/rFavXK5VqhO3YTH VadRJ87+B6mEThRqVOyy+P2uewMUbf4G1vzPYTdZ2jUk1uwxjUw6iUSmtSuWxnvvss63jNQtxTGz NzPpGs5ZTPpFXPB+kl0alnUZTu58NF64M02yeFa0LcBcU1A7ZnncWHjX1hahlYa9ZwOWJ7AHhISV Unoc7iQn+5K3cWV3lw9OHO8n5LyYcecIqDPUKecNoXy6XXvkyEXA1MrEHkQcTje1RbWNxUZiMITs JtpwVOLkzFGLnJRXE87hDa7u+ulZhrqaF9QJ64x4ZyUOehXJnncEo+Fw6gGIBYaiT67z0irVWOCu 3yk4eNqSvx18S/GzzYiWXZaL4aGSpwmzqpmpaUmJ6jY/ynz19Y06XF7a2tXqIfjILZCnoRPryNtN NMsPiYT5mkBccer1sEKtQUx1IxzlGJo05OKtq38jb7PxNaKnJybUVt2vRGnTxq35PTuVHcYMkcaq IQt5aVqQH3gNQE9lmCLpR235gjEhqi06YGumw7Yl3RSj7kn8dfzxMn6qnL/LTT7Vo/lp8jwuJ8Uo 31slra1lZqrBNhjA65nt0qSUqVKilNcKAPIcz5+rTtbjjxRqamnTpHVjbJMt9RNBw1nd1qW/wk5E z051FOU2r8NOw0Yj9KqUKSnl/lrrvza7Ow+hqYXyhXU+pk6iqYV3B7YmNatU4c+VfxHnFW9crpVi cfePObcyPGdWK1NisKdMkugP4SN5yN0gO4Ug9J5xYk5JJkTnOVOu+CNbXKZOBKNdE40jHuZniHNn DqyZ1a5qsukudPacyzHmTIic3Zw5N7iIiQQIiIAiIgCIiAIiIAiIgHWgmuoOw3m2cbdNNPPUztPL xE80+4lCIiUEiIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAJmv6n h2dQ9SMD5zTMV7mpWt6I+8+oj0Eprtqm7bvTx0KMQ2qTtu9PHQ0Uk8K1VfwrPi6bVHu6xt1+0qZV j233P5T7hvgb2n5+lWvQqXNSkxxr0soHMbyuslFRR9d/01SvCqo2v1VrsZbxNTUiOb5z+c0oTRUD /qoxAOMhumJANKo1NActtzOMe022yeQV1JarTHieGRsRnczNFan11etlpqMlt67fDgdKtN7axtSl RalF3Bemg31dZ6fE7iyvOF6qSI9RyEXI3BmOsLe34jaVxUxa1j4mnopne4tVvONFrEIrUl1s3Qt0 l6vZpdx89UcJTp1J3VryzbLfaXxsrivw8UuIWVGlUZXZSSeekgbGaLl+LWFtUd3pV6YXdjsZwS7d OO0jf6KTLTxsds5m3jT+NTt7VDnx6gzjsOc7VrNoxTlV6ajTqpSTV22r8W3Z93aeRUrsnBEszRqK XIOsjY5OZ6NvfW1UKlOquoDGORnTiyg1LC3A28UHHoJepaUUuNYpKHB2ON5uwKkptJ8jHjq9CrRj KcWnJylo+N7a352LMqt8Sg+4nlWdClWv7xmpoVyFAxPWJwCZ53CRlLip+OqTPRnJ9JBLtfyMOGeX D1pdiXi7+h2/Zdhkn6rSyeunecqvC7VabN9qAAThapA/lPQma/fRYVm/hM0SxFSMW8zM9DNOpGF9 2jzOHcNNSwV0uKtItnlg/wBZoXg9VUCpeM5A51UBmvh6aLCiP4RNYHlJlMJyVGMXZ6LgjVicVUeK qSi+LPCr8LuBRdy9rsPu0sH3zmZLXh91WtVqJb0mJOS7VSpI9p7vEH0WFY/wmW4evh8OpDH3RKqu SVZJwW3Lt7DXRx+Ihg3JTd83kv8AR4xtK9M/5e6//qqg/wBZ1o1bu2JDPe0UPxZUP/Se3K1atOlS JdwueWTLZ06Fvct3Nr1M8PamJb1d+9J+Z83Suay3NatSqvpZsF2pHBx37e00ftmtTcUzc2jMwzjJ BnocA4va29s1C5XVTrVCScZ0nvOnGA1lp8KjTei4yKgUEGZ6MaLpq7kuOj+xvx2Miq8k6cXl025a Hm/tW6ql6VOnSZwMkpUGwnOtc6qlBWolRSy5QHJb1mWjaUq1ZUNGmxZsk6dzLUadOrxKrjKUaa8h ttGJyO0Izla/FIjA16LlKapJWT2v3c3zN1vxagK9R3SoC2w8vICenZ8dshRNPxQMn7y9Z5NrQQ0W YakGdIIb9ek62lrUqUNZqfeJwVGCO86qTlmuprkrp+hRCeEl/wDravyl9Ub+JcTtnpP4VSmSlM4C nqZr4O6W3D6NNGxUZd8N3ngXHhtaajbojVagAZBzGZ9BZfR+xvqgqNQfTjJOsj5zJnnGd9G16nry p4foFC7SbfJ7eHNn0VhSApZ8QZzktzBAnC5q+LXaprUdACOk83ifArTh9qzrd3NHAJOmpyE+drVq lva06lK9uNVQFlSpjOOmZbB1Evd37UYqlPDydo1Ld6fpc9W1BvfpJc1sDRQQIM7CeqftKnlTbss+ Et+KXVAs1Covi1WLOmnOPWajxviwtTcv4VNEYe7+kihnUc+V69hZjMMpVMkakeqkrXtsu1cz7QgK 2Cjr774nkfSC51WyWwrH7aoqnPQT4+5+k/FLoFTc1EIP3dtu080tc3lYktUq1DzOcmTVqNwcZXV9 OPqRg8JOFVVNGo66NPbbZ8z9NTiNoUSjSuaNQgAYTmJ5t39LuGW1VqSoapGxdBtmfGm7W1svq9oC KlQfbVTzP8I9P6zzsGXwq0/7/MxzweJWrpvwPra/01JputC2IcnyszdPaY+FcXufHCjC4Znz3M+e A3nqWJBtk7h2P9JDkpVLp3svP/RppwnSwzzKzlfwSfqz6IcdrNk1V1MeoMLxkE+emQO4M8pEaowV FLE8gJqqW1G0tmqXNQa9O1JeefXtIlVklc8GnSlVmoLds08Iq/Wbq4qhG87fEeQAnqfXrOjU0eIr 1B1+7PmaVzVFklAHSg3IHU+srOaE5RgrmnHzjLESy7LRdy0XkfU/WlrknxQ3sZOc8p8qCR1nRbis gAWowHvL+l5mFq59NE8FOJ3Kndg3oRNNPjHIVKfuROlUiRlZ6sTHT4lb1ObFT6zStVHGVdT7GdJp 7EF4iJIEREAREQBERAEREAREQBLU11uBKzTapzb5SurPJBsGkDAwIiJ5B0IiIAiIgCIiAIiIAiIg CIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCYl+14q55ikmPYmbScAmYuHjUK1Yj43O D6SirrOMe2/h9zPV604Q7b+H3sbGGVI9J8NSq/VPr6uMhnKH+c+6nxfGTStbm7oaCGq4cMT1kYjR Jn1n/TjUpzotXzW+TMlWmCni48yeGAflNFubq1FvdLprU8+Fo5c+kh2pGzNNWzVyjFfTE6Ua9NeF XFGo+l8q9MdSfSZktT6WpOUqdst1dK1uDsu/jfQ5iqLS4IvaRWnobwqbc9+k9PhFzT4aUp1dGivu KqtkA9jMFRqvErulc+GpenRDlDvqAM9heEcN4parWpKaeob6DjB9pZBO94nnY+rRVJQxN0paStqk 9bcfjfW5NCjSveMX3iqHphVUZmK3t6qcRrVLJWrU7byortsD1xMf1i74dWrrbNldWg5GckT1LCte 8NtglSxZ1J1F0bJJM6TUnqUVaNWhByhJSUlFKLdtkruztr3cyDei84vZmpTaiaWrUr7bz1bkecMO RE8dr21q8YFa6XRSNLSFcb5z1E9V7u0rUl8GtTOOQDcpswdRRqavc8b2nQko08sGkl3pat7nGs2i i7dlMycIXTw5CebEn+c6cQqBeH1iCPhIlrFNFjRX+AT1HrWXYvMyLq4F9sl8k/qaJg4w2OHuBzYg fzm+ebxY5W3p/iqjPtGIf7Ujn2ar4uHY7+GpvpLppIvYCddtHrmYa3EaFEYU62HQTHeX9dqdMDyB lztzkyklZGbVttnfjNVU4ey6hliBj5xU4klC1pCmNWR16TwLktUamCSSz9ZvvcrUSmVA0IBgTL0j lWbXZ+fM3VFlwdNc3J+S9CanEbmpka9IPQSvEXxRRdZOKeTnuZyoprrIpOATzlOJ1fEaq2cjOAfS KsnlbfIqwcM9aEebS+ZWyp6hSTvjnPpLXitvcpU4dehRQO1KoB8JniWChQahOPDTI26zhnJzIhGy S5CvVbrTnzb8z1KtjV4XVrNUGQF+zcHnntPN4eGNS6qEkIRp9zPo6VehfcIp2N64SvpzScjHLkDP F4TS0JcNWGEDE+hxEn1k7czbhoqNCrJckvF39DQgCt4YGoIoUrnmTNNzVpramkpOojQNsb9ZzsF1 I9diAdWoZ6zjXqtUvkpUsVKp8wUH+ZlbklJt7LzIwdKVSaUUXe38e9sLbkpqZJHpP0G3ShY2+XKo o3Odp8Ra2zWnHLRWZmqqrVGJ6E9B6T0+KXRdD4rnSvmYdx0HzM5oRzuVRnp46SpQhTTvpfxbM/Hr lr+4NuzlUP2tUj7qDkJ4LVgBW4lcgCmvkoID16bTffCpc0qNFh4Yfz12/CB0Pt2nzHFb767crRo5 +rUfKgHbuZobvF9m55dCOerGL4teZysrZru4arUJS3pnVVfOMDt7zlxTiRrVs0vJRp7UUHQd/edb 29RbVbK3BFBDqcnm7dT7Tz7SwuOJOxpgCkm7uxwqiaqMcsFfkRip5685c2/MWNvccRu9IbIHmd2O yjqSZvuLilbO9OwY+GV0NUxgv3mS8vKdKj9SsiRRHx1ORqn/AG9JxQ4RV64zIrXc4K/H0LcLpSqy 7LeLRfPfJ9zGT3OPSMZxvNlnwu5vRrRQtMfFUfZR85dKS/kZYzkvdZlBJ5b+89rhnDAy6rwvSTGr URgkdMCZWqUOGV0a1YVqyDDORldXcTXSuK1XTVq1GqNVTzaum/SYVThJzbirX5dh7E8XXpUoKM37 je/Ns6PTFGszWVepTTGPM3mMyXAc4zVd2Zt9XX5zUMYOT7ThX3q0l9cyqrCmqdlH5v6mTA+0K866 ztNK72XBN8iQlZdta+gwT/SdV1acuNJ652kjnJbBJ3JHrL4xpx4PxPOr4npl1oJdysQChbGoH/Tv JKlcZGM8vWMnTpzt2kDSo2Rc9yN5Z+32mZZRgxB3PmyR+HOBJAb/AKfl/n/WMsHtL5DQiWTWN1Yj HXMhsAeVizHmTyjdgCxUEbYVecZFwkvn9BY0pf16Q8tQsM9ZqpcYOcVU+azywWOVXCjuxjKj4tR/ 0idKM1s14ojKfQUuIW9X7+k9mmkEHkcz5fGBlvL/ADl6VzWpnNJ309DjYztZ+KIdNn00TxqXGSuB VCt02O89GjeUaw2bB7Gda8iHCS4GiJVXVgCrAg9QZaSciIiQBERAAGTiegihEAEy26aqmegmyYMX O7UUShERMZIiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAcLu p4VrUbrjaTaU/CtKa4wdOT7zhxDzilR/G4z7TbyEoj1qzfJW/PkZ49as3yVvHX6CfK/SS3RuIIzc 3p4XbqJ9VPC+kivTShc08akYrk9MzqsrwPf9h1XTxsbPe6+WnzPEshTu7O5BUCrT0lc89uc3cMo0 6N7aVHQFa9IgEjkRMfDrEV6lUBitSmh8wPM9p1HEKR4ZQUgpWt31KTyYZ3xMsdLNn1WLUqkp0qTb TdmuV46fC6TPTtbdLT6QmipGk0SQPczoT+x+Ikna0uD8kaefxOq/7ZpXlE5FOiKhA6jO813NduO4 tbUfYbGpVI/kJamtUt76HkTo1JZKlV3hKNp9luPfxXPY5WFnTv764qs+aS1CQAeZPIz0rO1u7K4N IOKtod1LHdfSYeBvSs7mvaMwDF8L64n0EspxTV+Jh9qYmrCrKlvBpWuuFt12njUqaVPpDcq6Kw8M bETTX4PY1Vb/AA6g/wAO040P/wBx3H/1ietOoJPdcTNi8RVpTh0cmurHZ9h8jxLhq29k70qtUAYG ktkTRTtr+lSUpdqy42DLL8erUqdpVpahryMAe882re1a6KCdKgYwJvUKaqPLpotn3l8sdXeDhKdp daW6T4RO78VvKDaWSlV9UM829v69zVpmqpAU7KJ0wSNWNpwq/wCZpfOcVlLLbM915k4HEU51XelF NKT0uv4vtt8gLpM+YMPcTVdXlKpUUCqCFUKIoItS4pq3IsMyLinTqXNTSoILbbSbVL7oy58HJawk u5p+aOClKt7brrGnVuZquagqXLsG1DOxmejbI14qtTymgtiUNsmdsj2Mrpupmk7GvEwwrpUoubWm ml+L31N9kMVWqeXyKTvMF2cqB+Jp2SzK2j1RVqDLaRvMdWnUDIviEkttmKs55HeJOBw9BYiDjVTt rs1wPVXNGwPMeK2OXQTgil3CjqcStwl3T0Umqg6V5EcszpQp3tBWqhaRwucnpLFUf9WY5YJN9WrF /G3mjtxB1p1VIYnQvLtjlPS4alK++j9O2Zlo3GSVJP7wEz5uo9YowqKADzPab6VxXAoijakhFKrv z25+kV68IzS1SiuXE9Cjgarws4Qs22uKtonxv2n0P1OlY2gpkGtXY4pqD/M9gJy4LYim9xd1WV6r vpyFwcCY6PGK1rautWyqNXqDBqHr/wAb/rnNdtxVLe1p0hYXQC7fBPOpLNNuq+09WOHnRoONGOr0 vdfU6U31/SKvUc7UqIBM53ddFqu7jOg6m7Fvur/eYKfFaVO+vKrJUzUK4AHLHIek4V+KW6kFlZqd PJCsuDUc9TNtKrBJpvizFjsJiJzWWDaSS+RHFq9wnD6dtTVjc3D/AGpHMZ5L855VwafDbJrFdLXL nNZxvpH4Zop8T8KwrVaoNS9erqXUPg/inkUwHreLdM2hjlyOZ9pbOpT6KUU19SnA4LEQrxlODSTv ty1KW1obyodT+Hb096tU8lH9z6SvEOIrWVbW0U0rOn8K9WP4m7mWv7k1lFvbUzStEPlXO7HufWYB QqE4Ckzaq1LfMvEyPB4n/wBt+DOfWa6dGtXuVp0KbVGxjCjM72fDqTK1W7rikqjKqN2Y9vSdm4td Jb/V7RVopyZ0GGb3MqlWg6qs1ZJmmGFrRws04O7a4cFf7G4Wllw0Cpd1FuK3/YQ7D3P9pkvOJ17z CkinRHw0k2UfKYKesr5+cvpMs6WlxkvEy/o8T/7b8GPuz2LPzWqH8Ix/OeQQcAT07KvTpWrI5IbI wMTPCtTUHeS1bPQxOExDzKMG7RS27r+psnB97tB2GY+tU/U/Kc0qhrktg4xiZ6lWErJPiYsJgsRS 6Sc4NWi/noa4iSATymk8YiACeUtgDmcn0kFifQdhAuNlI5E9oLFuZ27SIgCIiBcREc4JEZPLMEYJ B6RBBKsVzpOM85UgEgkA+8mJ0pyWzJuy2s9yB2BxNlvcUjs71UP4gxMwxLY4irH+Quz3UotWTNO9 qEfKWNK8203CfNJ4SVHpnKMVPoZ6FvxZlwtYah3HOWrFN+9bwRF2bib1SMCk3ffEGrdqRqt1I66W zOtK5pVgNDg+k0Uk11AJ260UruKIv2GanxG5okB+GXApnOXyD/KdBx23DlXo3SkdTRbE9SJ5kq1G bvKHg/rc7zR5HnjjfDj8VytP/X5Z1o8Usq5Ip3NM4OOc0GjSbnTQ+6icanDrOr+8tqTf+M5vhnwk vin6IXhyOqXFGoSEqoxBwcMNp0BBGQcieeeB8O+5apT/ANHlnMcBtEBFOpcp7Vmx+UZMO9pvw+4a hwZ6gOeUTyl4PVproo8Suaadtj/USPqHE6VLRR4kDgYBq09Rjoab2qLwf0JcYcGetE8sJxmkoHi2 1YjrpK5h7jjIH+St+f3apOf5R+lb2lF/H62Iya2uj1InlNxO9QAfsmuxzuQy4x+cNxxKZUVLS6XJ wcUi2Pyj9HW4K/c0/Jjo5HqxPM/b1lrVWNRM8y6FcfnOq8Z4c9QIl3SYkZ2M5eFrreD8B0c+Ruic 6dejVbTTqIxxnAOZ0lLTTszhprcRESAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIBib7Xiqjp STPzM2zFY/aVbit+J9I9hNsooaxcubZnw+sXPm39BM3ELYXdjVonmy7e80xLmrqxrp1JU5qcd1qf CWqVPrlOgK7IdeGcH7xHX8puoULi4t61ktvSqpTdhqY4IPpOX0gtXs+I07ilgBm1YA+c6WV7o414 yN9jUIBHqR/vMKSUsrPvqs5V8OsRRs7xuv8Akn2W11djGEq/WqdB6dVzTUpUVTgkA8vWezwPiNJb mpZY0LnNMEYPsZ34gi23GLO52VWYhj3OJ24vwune2xqUlC3C+ZHXYy2MJRba4Hl4nHUMTCFOsrRm t+Urvh+aMzWFpRubu8NVclK2VIOCDPdnyfCat/Tq1xbqlXGC6sdycd56bfSGhQVhd0qlCoBsrDn7 TunOKjroYPamCxEqzUHmSS0Tu1ouG5KVEpfSC5d2CqKQJJM8ni30napqo2WVXkah5/KeLxHiL8Qv HrEaQdgo7THM0671UTHj4WnDN/WPkahVarb1NbFmzkkzYvwieWjYDDuJ6i/APaehgp5l3L6kVP8A 0cP+UvKJcHAIxzmep/maXznecKv+ZpfOaq3u/FeZHs//ACv/AIy/+rN9jp+tKzjKqCTicS2KhZe+ 2RNFpqSjcVFAICaTn1mWWLcxPZHPWVuhuQSpE6StamVegxGNWcGXUZYDvKqW8u82433KP/H1Zorg Ja0EwQxyxzMYTXd26nkXmu9P+I0BtQQBZiq5V6bAbZxIrf4/zmT7O/8AUrufkzeD4109V/hU5Of6 SalUi1IJOqs2cZ+6JVxot0pj4n3aZqlQlgSMnkq8sgTXFqnHpHw27/zUx0YSqyeX87StXQKL6w3w nTgc563DaLUqJqKdqiDLY5n/AGnm3Cilw3B3aodR9B0H9Z71oETh1AH74BM85pzq3lx+R7cZRhgc tN6ZtXz0v4GaoWq3FNGYEr5jjl6YnsWl8mtKdd/O+yDHOePQ81apUGwzgewnj3d41xe+JScqqHCk ek209W2U1nkioHs0CTd3oTSaprHR2G25/KefcBarC6ZT9TtW00aeN6jdc+kz218rPXoswpio2qrU 1YIUcwPUyalYVD9duS1OyTa3oA4NTH63MjCwioXZ3j2+nfcvJHCkzVqd5dXwNOi5BZsbn+FZ495f tfFiFFOlTGmmi8lH+82V7m+49ciklL7JeSIuFX1lalva8JqBlr07uspyyAZQdt+strxioXtxXmjn 2e30714S/wDqzPZcHu7un4zEULfrVqnSv/M0VOI2fD6ZpcOpmpWxhriqM++BPPveI3N/UzVc6R8N NdlUdgJkmjo0/eRl6Wa2bOoq1KlYM7EknfMiozCo255ytP8AeL7xU/eN7yrJHp9uHqbOln+jvd+9 6FqdQq4yTiaszDNVF9SY6iXOEeRj6Wf9mdT0nu0tOA2kHygfynhHpPdtV1Wav64J+UyU0uhX5xN+ PlLNV14R9C2B2lKdJvHd8bGdTpB280gknmdpW4ptPkeNTrzgpRX8lb5pg4GMHJ6ySSfbtIidFIiI kkiJEmQBERAEREAREQBERAEREASSAAMHMiIBKsVOQSD3E3Wf0iFnV8O4Quv4hzE89m0qW7TynYu5 Y9TMWNrunFRjuwlc/SbS/tr1NVCqrenUTTPy+lWqUHD0nZGHVTPqOGfSkMVpXoA//kH9xMdPEp6S 0IcT6iJSlWp16Yek4dTyIOZeaiBERAEREAREQBERAKsiN8SKfcTm9nbVBh6FMj/SJ2idKco7MXZw t7K2tWZqFBKZf4ioxmd4iRKTk7yd2LiIiQBERAEREAREQBERAEREAREQBERAEREAREQBOdxU8K3q P2UzpMfETmgtIHeo4WVVpZabaKq08lNyR0saZp2dMHmRq/OaJAGlQAMYkzqEckVHkdU4ZIKPIRET s7PM45afWbBmUfaU/MpnyHjLSpACmdxjOckdQZ+gkBgQeRnxvE7RuGXZAH2LN4lM9j2My4iH8kfW f9O4xOLw09XuvX6+Js4hxC3veGUGWor1aTKzD+U0WvHHqWqUadB610BggcvcmeRd23g1tVHSLa5T WARyPPE11eJULI0b62qK+pdFSmNsnvOVNp3bsaK2Ew/QRjCOZXbjfg/6u3bdd6RZr5uD8Qq1bpFF SrS1aU5Fsz5y9vK1/cNWrNknkOgHaRe3tW/uTXrNknkOgHacJnnUb0Wx4WOlJunW2bj5Nr0KkeaT giDzEtKi/EY2oqdJtKSceKvqm1vv8yue4np069MqBrHLrPNPIz0KKU6tBSUB2noYByzNRIlPDVMI nODilL+L5rt7uZ3DA8jmcav+ZpfODbJ90svsZxqU6iVaZFTO+BnpN9WU1HrR4rzIwNDDuq+jqatS 0atvF8ro9ZVZeHO4OzOBiZpV/rVO3pqdDA5YAc5zSrV1qDRYnPIb5narRW6a+Blfs+o/clGXdJet jve4W4tkDZxTyfTM7Wa6rpNwMHOT6TFeXIq3wqMhQDy6SNxNNtd0Up1n1rq06QCO8rp1ILMm92ac XgsQ40rQbtG2ivxZFRi9VmJyScxWTFG2UKNdSpkb9JyFWmxwHX8514lUArUdD0/ssAEcvedVppx0 1KvZ1CqsQs0WtHuuxl7uqRdBKSazjdc40r1/2lKSGrWAJyWbmek6UQKVhUqO4evWbDMRvgf0lrXy LUrfhXA36maJ32fAzVJxhBUae3F8/ty+ZW+H1g1dGQlNdvQCepnRY0WXn4QBHeYgnh8LrVWOC4IH rO9LL2lurEMSAc+kyp3qu3I9DDwvhFf+3ojld1xacP0DJqVPKJ4dVnSnhBljyGOU2X90Ktd6nNE8 oOZ4lSvUdmOogHpPQpx0tyMlWeeTZI0IcuckdB1no/XLSuhub+tpC+VKNMebA7dAJ4V5d0bKh4td wq8t+szrUFfDqQwbcESMPFOFm+fmacf/AJ79i8kezX45cVwaNuq21sPuUxjPues80HPiH0kagg0D GephPhqe06rxUadlzXmRgNa/wfkzjEYPaTpY9DNDkluzIoSeyJp/vF95NX943vJRGDglTjMs1Jnc kDbMyurBVrtq1vU9GOHrSwuVRd83LsOMvTbQ4J5S3gt1Kj5x4SDnUHyln6mnwdyj/t+I4xt3tLzZ tXGtBzBI5z20GgNTXamHOBPBpkeXBzjkZ7KJWIV2qDB3wBMcKj6NJJ/jNuPw6tUlKaXu9vDsvvwO 8RE7PmhERAEREEiIiAIiIIEREAREQSIiIIEREAREQDNePhAgO5mGdK9TxKpPQbCc58/iqvSVW+B0 tCJMiJQdG2x4ndWDg0ahC53Q8jPsuF8dtuIAISKdb8BPP2nwMAkHIOD3ltOtKHcctH6nE+P4T9Jq lIrRvPOnIP1X/efW0q1OvTD0nDqeRBzN9OpGa0OGrF4iJYBERAEREAREQBERAEREAREQBERAEREA REQBERAEREAREQBERAEREATFW+14nRToiliJtmK0+0u7mtjYHQD7Sitq4x5vy1M9fVxhzflqbYiJ eaBERAEzXtml7bmk+M81OORmmQSFBJ5CQ0mrM6p1JU5KcHZo+PuLmla2VSwuQRVouTSbGfafOMQ7 MRtk7Celx6+XiHEGemBoTyg43M8sTy6sru3I+4w1Xp8I6lBtSbu+Npb7cnrpz+blsektIK7QOW0r POxn6fG0ukjPK4uz0srvy1uS3IRIJ2wZIknn4nD1KeEhmWze2ujs/qMbTbYtmmV7GYp3sn01ivea cJPLWXaUUethaseWV/O3qejOFzsqt2YGd5WugFu2fiGCB6T2qyvTZXgJZcVBva9vHQ13jAmkoXGm mB7ytmoN0pJwF82facqlc3BFQ9QJ3tcrSr1QAQExk9MyVrFGecctRx5PyMF0c3CVDvljuZteki2C ZprqqNnV6CYbkfZg9iDN90P3VJMjSg1E9MyluMZyv2M9HLUqYelKD2zLu1v6mWnbpUqhVRcjckjY e8416SKAVXmwzgz0bUCha3FRCQOWOeczJVpl6bBfu+badOhHopVZrXgaMLjZxr06UZtxvrd7308O R0u7KnT0BdajTuNWd4axwtGilSpqfcgNNFlUFepiqMq4yR/ebaFMi8e6yCiDy47SJUoZbpGL/uGK jJwlN721Mlxw80qLU1r1WCqSVY7Z7TF4VQ2S1BcNjGkDt3E+gqBWt3uKnxEHCjkonyde5FO1CKfM CR85XTowlVUUezTxldYKU3vdcFs79nYZLioVY0wxYDnMxZVBJGwjnPnPpPxQ0aX1KifO/wAZHMCe hKjThG+vizBHHV5O2n/8r6Eca4rRa3oVRRFei5IAbkCJSy46lrTQVbdKVMnkOkw0wF+joaoAXpVM gHpmeHUqmq2p2J9B0nmwWr7z0sTiakcuVqzS4Ll3H6OlylQB1VCrbgidVbUzDSMgZGJ8RwfjJs3W jVyaJ6k50z7Kg6u6srZRxsR1m2UKUqTlFaozYbF13iYQnLRu2y4k+M/oPlINZ+8oRgkSJqVCluoo xTxuKvZ1H4lxVfUMsZasSKh32nKda2+g9xOHCMasbLe5dCrUqYWopSbaae/evU5RE0ULKvcboh09 zNLaR5zfMtbhnNJUGWLaQJ9IhBt6Q6gEN75mCz4YLd0qM5LodQA5Znos2piSAPYYmLRJpc2W4rGR qwyxWto/JWIiInJ54iJIBIOBy5wCIiIIEREEiIiAIiIIEREAREQBERAE43D6KJ3wTtO4GTgTz7up qqaQdhM2Kq9HSb4slGbMSZE8E6JkSYkAiJMSQRPQ4bxe54a40NqpE5ZDyMwSUUM2CwXbmZKk4u6B +i8N4nR4lbipTOHHxJ1E2z8xtrmtaVRUoVGRh2POfb8J45Q4gi03IS4xuvf2m6jXU9HucNHrxETS QIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAIiIBSq4p0nc8gMzhw5CtorEeZyWPzkc RYi1KDm5CiaaaCnTVByAxKPerdy8/wDRn96v3Lz/ANFoiJeaBERAE+d+lHFDb0RaUj56gyxHQT3q 1VaFF6rnCqCTPzi/u2vb2pXbm529BM+IqZY2XE6gtbmaVIloM8/c9LAY6eEq546riuZVT0kjniQR vG4kH008HQxqnWw7SU1qu1a3777otKgSw5SORkng4KrVpKrQi7O113x7HzVxv7y1NtNQN6xKt3hO zujrB4mnXqOlUgk5Jq60vxWm26XA9hHRt8gj0M60aXj1NGQBgkkzDRo06lJWAKnHMGabehWXxGSt gKp+IZzPf6Sbhdx35GSNHDuadOpZrhJW+av6HOgc0gOxIm7Crw/OTqZ+XoJ5dFqiVGphNW/eehUu gLajTrUyhUHSCOfqfT9dyOI14RglLh6GrFeza1TETlTSalrutnrtvxOD0zUQruABknHL9frri3i+ KgIzj1O/zl7a5oEsFcIqocBupx/WZrRgQlMthicCdUV0ldNvdeBNajUhgnSUWrSW6et09e7Q1eI3 gCn9zJPzlwpTh9epg+fyA5i7ZPrBSnsq+UCXuiFpUaC4OFydupmqrJT6q2PIhJwmpcjjYZTh7Vup 8i+89i2pmjbJQAAqPuS3JR3nk8MR69RbUrgU3JP/ADPfVWuKhqJpVQcA9T0zMUZXiuw242mlialt r+epl4hUFvb+SoD0OewnxVasXqMwx5iTynf6fcTp0VFnbsAy+VgG3B55nyVN7m54YhSqwZXIZi3I esroVHGed8/lax6yor9O6K06ifxvfyPU4rxL6hZtUOC52QY5mfB3Fw5qNVrVDUrtzzyE7cR4k9Vv D8Q1Cmwf/aeXzm6rUzs82nTUT2LBjX4RxCk25ADj5Tx563ATquK9H/uUWWeUwwxHYzLDSUkehW1o 05d68Hf1Inv8H4u9pcUaNQ6qDYAP4TPBCk8gTNC0qumkVRzg52EsbsZY3U4tcGfoFT94fWVnnLWv P2jTC0XqUKyKcgfCcT6ChYKTmq5x+FRNdHF0uiTk9ScXga/6ieSDau+BhVSxwoJJ6Cb6NhUuAqN5 COeec9GjTp0f3Nsc9zOuiu1dG0aC/lGeUpr4qLyuPB/Y6wuErWnTlZZovir6Wey14HO34bQoDddb d2mwAAYHKXSzZGDV7lcD7qzualsgGimWI/FOlOU9Wjya9BU5Wzp91zOFZjspMidmuqhBAwq9gOU4 yTO8vAREQciIiAIgAk4AyYgCIiAIiIAiIgCIiAIiIAiIgFXbQhbsJ5ZJZiT1mu9qYCoOvOY542Pq 5p5VwOkhER0mAkiTIzJgMSVRiCQCQoyfSRGSOsAdYnVdNQsNAU6dt8CcoAlkdqbq6MVYHII6SsQD 7fgfHFvkFCuQtwB//qe5Py1Ham4ZWKsNwR0n2vAeNpeUlt6zYrqMAk/F/wAzfQr36sjho92IiaiB ERAEREAREQBERAEREAREQBERAEREAREQBERAEREAREQDFc/aX1vS6AlzNsxUPteI16n4AEE2yijr mlzfloZ6GuafN+WgiIl5oERBOBkwD5z6V3ppWyWqHepu2/SfHT0ONXX1vilZwcqDpXfIwJ588ytL NNssSshERKiRKkYlsRBuwOPnhJ3jquK/NmUEknvJK9pHXeQfUKrh8ZJYmLvl3Vusrd268fgWEHlK 4wZOe4g8KtgHCoqmGknfVLZ/Pe3YbrFsoy9jPUpMEsq3lyWIUHtPEs303GO4nrPXZbZKCjcnXy2n tYWquhV+4oxmFn+pdlZNZtdLX38GZHzTuEYEqzjAI6HvNt0qpXZFYsBzJ6nG8ymg1QEUxlwdfzlx VNf7Q823MtpwtVbludYqqp4SDpvRPK+btqvsuw7aaaWFR3RPMwAJGT8pjsrZKl463CclL4BmhnNR aY0YRM8/vHv+uvsDKVqTJbi6GwD6feXYqlCEFda3u+7l6sn2fiKqm6MZO8lZa7PdeL0JoWK17lUB YZO+D0lktHr3LYrVABuSTnAE0WreHRq1dvh0jPcy1BWFudPx1W0D26yt0qa1sZ17RxWzlfvs/Mz2 qXC3NRUuPCaquVbGdf8AtPRqJf2lq9apeoipyynPaTxFFtaltWpnPgYDL6HnMX00uzb8FLCoq+Jh Kaqe/U+mJkhC9+zXc9mFWdV0Wknm0fVT1W/DlqfBXHgcRuK13cowViXaoW2J9JhN3Z3NvXtKKuKV NdTqNmb5zHxy6NvSp0UJC6chc9e88fhV19X4lTdz5WOl89jHRdS6NMcbmxPWirN22WzNH1jg4/8A xKp92kfXOEjlw9j7vMfEbY2l/VpdA2R7ThTpVKzhKaM7E4AUZJlyppq934mWpialOTi4xVv/AIo9 q04lw9Lqn4Nl4LE6fE15wDJvbyjw+7egthRYqdmffV6zVwf6D8U4kQ9RDb0+eWG/5T7qz+i9nTut N6lKpXp0wC776h3A5SuUYRmrvcsp42pOjPIleOuiVrbPhbkfEcPp8Y4kA1pw6hTpk/GUwJ9pw76O 1KdotW8rmrU1Y0ooC+0+gVbKgoVVZyByGwM0U7sm2qeHSVdONOBn85Z0cf4w8fy55lX2jiH71W3Y vtZHk0bEpdmiaYXIyNQ5CbfAt6OzvqPUJ0mW5WvUAr4dvDO57CaKdpWqKSEx/qOIpWpyak0vuTjJ zr04VYpybVne71XZ2qxbx0p7UqYH8R5zjWdq5XxDnTuJ2+p1FH2jKnbUeckW1MbPWUNz23E1Jxkr rVHm/vQlyfgZomjTbIMF2c91jxbdfKKJYdydzOirJzaM8Tu1wunSlJQvTPOcIOWktncREQciIiAJ OTjGdpEQBERALauWQDgYlYiAIiSBk7nHrAIiIgCIiAJBIAJMsTk5me6qaKWBzO04qTUIOT4AxVX8 SozSkYI5xPnJScm2zsRETkERJiSCJMRIAiIgCRESQTJR3puroSrA5BHSViAfc8B40OIU/Bq7V0G5 /EO89ufmFCvUtqy1aTFXU5BE+/4RxNOJWavkCqNnUdDN9CtmWV7nDR6ERE0kCIiAIiIAiIgCIiAI iIAiIgCIiAIiIAiIgCIiAJDNpQsegzJmXiFTw7N8c28o+c4qSyQcuRXUnkg5civDR/hjUPOoxabJ zoJ4dBE7KBOkijHLTUSKMMlNREREsLRMvEbkWnD61YkbKcZ7zVPF+lFbwuEMuM+IwHtOJu0WwtWf DE6mJ7mRETyi2wiIglgxEQRbQszAhQFAI6jrKECTEF1GtUozU6bsyu458pIMmdKKJnWxAweR5cpG x7dHFUMdF0sTHK98y0Xf2X48+VyFUIAx+LYqO834Y00ajWzkZZWHIzz6bKaiitkqNsz0bqpbrc+J ZkmiAFOefvNWEklPU2TjXjSdGCvD+LdpKXY328OT0OlvcPSLtVosRoIykyUaoDGkGKZbIYnGB/v+ vf0BV8Ph9TSAXqkKo647+3L9YmYW2sKyqGemMnI+L3nsuE6UenTu1sn5/nE8zDVsNUvQqwyZuKfF baPbkarhqRrFaJGhQFGPSTeoBa06O266jjuZjoW9K5dNPlLHHPlOrWlQ3fhUq7HzaQW3nDnOSvJX XYzP0FCnV6tRxkn/ACXFd1y9GqHsqNFc6gTq957Flb+JcaV3WguN+RYzxqtG5sbparKg1HIyMAke nSeql1xDRhLNCpAZgrYyJV0iUck76GnEez3Oq6tOUcstVql59pq4mKdtw5kY66tQEZM/NvpHd1Kv 1alVdQlEFmZt9+WDPrL3iVa7rgtQZQuwUHM+N43YvxdiaQydWxI2x79ZzWqRvG2nM3+zcNWVKqmk /wCuqeuztZ8j4ridRrurrG4XYe052HCOIcQrrStLWpUc8sCfo3Cfohwy3pU63ERXuKvPQowvtmfX 0OJ2lki07K0FJBthUxqEpeKS6sA/Z9W+aSZ8Xb/QE8TuaQ4lWNGrSpDxFQZz8/SfWcO+j/BOCgta UqXrUbzN7YPMSLi/H1xK9Go6OPK2sY2lm4jtqWyGM4yElVOU2utL4bFuMw85NThDVrW+uv5qbjWo nJ+sBUG4RBg/IzzLh7elXpV0V3AOGV+0v+00qDFWyJxy0jT+cqbmhVHhvYkI2xbVuPWWu1rJO/w9 DJRo1YVc9RxUdnd62e+7ZoF1RQZpW6hj+LcYlk4iyKQtJFJ5ldpxpvYEYXxjjY5ABkvb29Uhqdya SjmjDJMvTpuN8jfizzpUa0ajpyqRj8vJFK1zVr09DNt6DEr4lU01V6jNpG2TNK29s2wuDqPLy7Zk fUsHDV6Q/wDKWqVGLulb4GaX6mccjd1vun6mbJYjJMMNLEA5AmlrCtzTDp0YHYyDY11QtpBx0ByZ b01PbMih4etvlfgZonUW1duVJz8pzKsCQVORO1JS2ZVKEo7oiJOD2MiSQIiIAiIggREQBERAEREA REQCckjGdpERAJIwSJESScnIGPSARPPun11cDku021X8OkWnlnmTPN9oVbJU0Si+sNqNTLNjAOeU qylTg4+RlZOZ5J2IiRJIEmIkBiIiCBERAOlQ+K2pQAFUZE5SZLMCAAoBA3PeEdXKiIkyQ2RNnDb6 pw+8Ssm4GzDPMTJEJtO6IP063uKdzQWrSYMrDOROs+M+jHEzb3P1Sow8Kp8OejT7OepSqZ43K2rC IiWAREQBERAEREAREQBERAEREAREQBERAEREATFefaXFtR7tqPym2Yqf2vFKjdKaBfmZRX1Sjza+ pnxGqUObX1NsREvNAiIgCfLfTFm02y5Ok5JE+pnyP0vqMa9vT0kKASG7+kpxDtTZMdz5mIieaWiI iCCZEZiAhESQRq8wJHpB0ld2JRARqbOjlkd4Zy53222HaHfU2wCgcgJWC6tVVujp+7833/Q18No+ PxGhTKa1LDUuOY6yrolS7q+F9mpY6UG/ymjg9QULmpcmqtIUqbHLdzsMfnM1rUzcg4+LbfnNeDox c+kq+7t3vs9WaMJjq+Ej+1LR8OD+BZWrWyDVTwW3we022d/TVKxY6Cy6RkZmq/BeqlJ1GUQDaKnB 6VKyWpVqeFUJyBzJnoTjWjrF3XI9BYvAYtv9RTyz/sn5/wCjHZutC7FZdJpHY55KTyM9m3NvbU61 VPtKir8fQE9p5tW2ovZh2VVfVpwmwIHWZqqXdvRRUcNTc6tIG4kxnOkm2tGcVKVDFyjClUtNaXlp flrz7dLnqilUvqWio2XrNqLHoBJPEHo2lS0q48cHGoD4l7zjYXV0yNWWglVEGk6TjAnnX9411cms UZGHIdMdpS6qlPpCylgayg8LUs77Wa0fdvZ8fHgdpzrUxVUjr0Mol1TYDLYPYzqlSm7qNY3OOc2Z qc1a6PHWHxeGqKWRprsZ6lvdM1igrUyDRUY6Z35yGANY0SQNXmpv0X2lq7ha1eifNSpUiAOpxyMz Gp41jRuFOGQ6c9flPPopZst9ftoerjJSknWiurx7+K9V3ENTW7DUqpVKq7am2yJloV69jVa3ZsEc s9ZqrKK1EV0GCNnHr3lA1KsipXTLD4ag5rNDhdKSW26M1HERWajVej1T7eD9H8zr41tU/eUip6lD zlWtMrqo1Fcc8dcTlVovSPmU6TyboZRWZGDKSCOREvUNL05eqPPlU1tVjr4MNTNNiGUqTzyJE0pe Np01UWoO55ydNtX3VvBb8J3BjPKPvLw1Dpxqawlfv0f0MsTu9nXTfRqHPI327zhLYyjJXiymdOUH aSsTqYDGo495KVHptqRyG7gysSbIhNrY6m5rHnVf85b63WwBkflOESFFLZHXST5s7Nc1HQq5BHty nLdiWJ365kRJOXJvcREQQIGM7jIiIIEREEiSTk8sSIggREQBERAEREARJBwQSM+kqzBQWPIbxsDH eVDqCDlzMyyXfW5bvKz52vU6So5HaQiPlEqJEmIghjMRHSQBEjpJgCJEmAIkSwGQTqAx/OARElwo PlJIx1EiAIiIBIJVgRzHKffcC4j+0LAFyPFTyt/vPgJ6vAL/AOo8RXUcU6nlb/eXUKmSXYQ1offR AORmJ6ZwIiIAiIgCIiAIiIAiIgCIiAIiIAiIgCIiAQTgE9pk4cNVOpWI3qOSD6Tre1PDtKjdcYEm 1p+Fa00xghd/eUPrVkuSv4/jM8utWS5K/j+M7RES80CIiAJ8r9MeVr859VPlvpgrFbZsHSMjMpr/ AONkx3PlIiJ5xaIjpEgCIkmCOJERJgXIllXOSTpUbknpK9QMbnYTtQtq97WSjRQuxOyjv3minSio 9LV0j593q+B0kbrdadxwq7quEUUQFpKRuSTzPrz+X854Pwive3CVSui3Rxqdjj8vWeqbW24Fwj/G ola6epqWmpyNhyb2zMVhf3V7xB7hgpSjTZxT5Im22BM8q7qXmvhbh3F+VKSUjXXuqVOu/wBVGosS CzjP5TlfszVkRs6lUA5Od5lsP8TUp5GctviaABX4hgA6S/zxPo4TzRUuwzN3LV1YtQthnKgbHbcz uF13r6ckUl0rnvynJXD3lWuTlUyRn+U3cOoKqCo//wBjZ6dv7zmbtE6irs53rU7O08GmqrUqfEQM Ezx+c0Xlwbm5eoeWcD2nCd045I2IqVHKV2zkaFMuH0jP9ZdKFLxF8g5iWkp8a+8dHDkW/rMRos70 7WegyIeLXCkbVRpY+k4Wyq1CrbjkN1/4E7VHKcWJABycb+s4Bhb3x0k6Q2PXExU4LL1d7J+Btr4i cpdeTaUmvha31KW9XwmKuM022ZZFekaNXTnIO4I7Sbqn4Vw46cxidEP1qjoY/aIMqT1HaacyVqi2 e/1MSi3ei91t6o5065wKdUlqfLHb2itRFPDU310z94TidjvOtGuaLHADA81YZE7cWnmgVxmpLLPx 5fY5RNNSiaymtRA0geZR92Zp1Gakro4nBwepdK1Sn8LkfOd/rNKrtXpgfxKN5licypRk78TqFacV ZO65cDUbRag1UKikHkpO84VKL0mKupEpkjlO9O7qouk4ZOoYZkWqR2d/M7vSnusr7NV4fc4RNWLW v3okfPMq9nUUAoRUB/BvCqx2lo+0h0JWvDVdn03M8QQQcGJaUiIiAIiIAiIgCIiCBERAEkDJxnHr AGQTttIgCIycYzt2iCRM93U009I5tNEwORXuSuSRyXAzvMmNq5KVluwlcz4iCCOY6yJ4Z0TEiTIA iJHWATEiT0gCJHWTAYiJEkFlK6xqBK9QJB5nHKIkAREjrJFieUSIzAsTA25SSAACCDn+UiQQff8A AL43vDELfGnkY956k+I+i921HiPgfcqjf3E+3np0J5oHDEREuAiIgCIiAIiIAiIgCIiAIiIAiIgC IiAYr/ztQo/jcZHoJtxjaYv3vFR2pJ/MzbKKWspS7beH3M9HrTnPtt4fe4iIl5oEREATwvpXTZ+F BlGyOCfQT3Zh4vb/AFnhVxT3J05AHcTiorxaJjufnMQdjuN4nllwiIkEDpERAJllpu+PDUsSeQ/X 627ibuGcJrcQbWNKUFz4lR9lX/f2/ptPRPEOF8GBXhdNq1xjH1ir09h+cvtTov8Ad1lwjx73yXzf DmWRpWWaWiOdrwQ06AuOKXAtaB+FCPOR6D9dOwkXPHktqZtuE0hQpYwahHnf3M8m6vLi9qmrcVWd z3PKcVUswA5nYSirKdaWaq/hwJ6S2kD0+J1av7P4fRqDGEL5PM5MpZ6KfCr2q2rW2mmuOW5z/aX4 94qXqUKjBvBpKox7SaxqUfo7QplVC1qzOD122laXVS/OZL9534f6J4M2PGYtp0ISD68prtcqtWvv 5F5g9TM1jmhwiq+tQK1UKF67CaiuiwQad6j5znoJ7uBqZ6VuTsUtWsXpUmNqijOus/8AITbfP9Ws AiEZqn+UWtPXdbAYoqF279f7zz7+4+s3TMPhGy+00WU5a8DpvLEyxES4oElfjX3kSV+Ie8PYlbmu 4c0+I6wASCDgzleKqXTac77/ADlr04vCe2DJvsNUSp9511MO0yUdOj7voba+vSrlL6iv9raUqvVf If7TMjFHDDmDmaqH2tpVpHmvnHp3mSW07awfDyZVWd3GouK+aNVyniD6ynwudxncGZZotagGuk/w 1Bj2M41KZpVCh6H85NN5Xkfw7iKqUl0i479/3CO1Ngykgid2WlXTNIEVeZXofaZpKsVYEHBHWdSh d5loziFSyyy1RB2iatQvMLpVavTG2r/mZ6lNqTlXGCIjO+j0YnTyq61RWIidlYlkqPTJKMVz2kAg A7ZzIhpPRhNp3R1rVzWC6lXUOZA3M5Sc+XG0iRGKirImUnJ3b1EREk5EREEiIiCBERBIiIgE4OM4 2kSQcEbZ9JEECIiAcq76KLEZ7Tzd/n3mq7rEMUVsDGCO8yzw8bVz1bcEdLQnWxUKWOOYErJiZDq4 iIkHIiIzBIiWKkIG2wTjnKwCJ0FMGi1TO4IGJSTqOkrnY9IFyIkvoBGgkjHUSskWJkREARJiARER BIkyIgg7W1Y29zTqrzRgZ+l0aq1qCVVOQygifl0+/wDo9cfWOEUstqZPKfSasLKzcTmSPViIm45E REAREQBERAEREAREQBERAEREARE5XNTwrao/ZTOZPKm2cykoptmew873FY/efA9hNsz2SeHZ0l9M /nNEroRtTV/y5Vh42pK/f46iIiXF4iIgCQw1KQeoxJiAfmvEbY2nEK1EgjSxxntMs+m+ltmVrU7t QNLeVvefMzyqkcsmixO4iXp0qlU4RS3U46TYKVnbL9rU8av/ANtdlX3P+35zqlRnVfVW3gjtRbMi 0ajoXCnSPvHlJJFFxgBhs2c7/wDH9eXLcS9W8qVVUfCFBAC8gOw/XvmZ5e506OlLWXPl3L1fwsTd R2NVbiFzXpLRapppIPKiDSo+QmWImNLiQ23qyZosKS1r+hTfIVnAJHaZp6PBfDHEkeqpZEVnIHoJ zPSLEVeSOPEXWrxK4amxZC50nuJ24roQWtBNX2dEatXc7/3ma3pm54hTRcAvUGM+818Wd7rjtRSo LCoKeF642kWs+463TfNlr/xKNnw63KKp0eJkcySes9NV03lNGG1FMnG+/P8ArMZVbr6TKgVUp0SA QxyMKP8AiarNmvGeoQNVaqRt0AOTib/Z07NxfI6nHj+aG13+p8NNTP2tbJ/OeJzM3cSreJctTD/Z psB3MwtjJwCB6z2YLS74lNR3dhEROisSV+Ie8iSPiHvIexK3NF9/mm9hLXRD29CqRhiNO3LAlb// ADR9h/SS5D8PRjsUbSMdRMsNIU3+bG6etSsu/wCTOdrU8K4Vjy5HMi4p+FXZcbZyPacpquftaFKs O2lvf1l0urUT56fnzKI9ak1y19H6GWan/wATbBh8dIYPqJll6VVqVQOp3E6qRbV1ujilNRdpbPcq Bk4k5U58vTbE63VJUcMg8jDInCTGSkro5nBwk4sZminUpVF0V9WR8LD+8zxEoKRMJuD0L1KTU3we XQ9DKlcZIIIG07U7ghPBqeal26iRWtzSAYMroeq9Pecxm08sv9nUoJrNDby+xxBwYiJYVCIkjGRk 7QCIgxAEREAREQBERAERGDjMAREQQJV2CIWPQS0y3lTChB15yqtU6ODkSjEzFmLHmYiBPnW76nTI 7yZEQSTIkyIIJl6dMOjnONK5HrOcsGZQQCcHY+sgnYrESZIbIiTIgEyJMjrIIRMREAREQQQZYISh fbA257yJEk6TESYgXIn130PrMaFxRwNKsCPnPkZ9H9EajC+q0wfKUyR6y2g7VEcy2PsYiJ6ZwIiI AiIgCIiAIiIAiIgCIiAIiIAmLiJzSSkOdRwJtmKp9rxSkvSmpYyjEawy89DPidYZeenibAMADtJi JeXiIiCRERAEREAxcWsxfcOq0tOWxlfefFJY0LRtXEahBA/c0zl/TPQfOfoU+H+knDjaXxrop8Kq c57HrKasaa681f8AOJZTklujJc8S10TRtkFCl+Gn19zzP62nnkkmREx1K8prLsuS2/O3c7lNy3ER EpORERAE9XhRq0bO/uEQFRR0Enpkzyp6lKnUp/R6tVD4SpWVCAeeBOZHdPR3OXB1Q8RR6mrRTBc6 eewzOnCVWtxTxnVzTphqp08xiW4U1ShaX9wqqVFLQSfUylhijw29r+IUYqKagdcn/icS1v4HceHj +eBNmStC9uQQCw8NMjJyx/2zPoqaGwshkELQphN8fGdzPKtaQNlY2xcFXdq9RSOQH/ozvxi8aktt ZbDXmrVwPvHkD7S3DTtiI2/OB3a0G2YCckkwSSdzmIn05jEREASR8QkQOY95D2JW5q4h/mj/AKR/ SKZD2FVWGyHUCOpMniIxd/8Agv8ASLQhqVak3wldWeuRM21GL5W9DZe+Jmueb1Mk10PPZ1qfMjzA dvWZJ3tHCXAz8LbHJ2+cuqpuF1utTPh5JTSez08ThEvWpmnVZd9jtKTtNNXRXJOLaZqtWFVTbudj uvvMzKVYg8xIBwciaqwFegtcfHnDyt9SV+D8/uXL9yFuK8vsZYiJaZxOlGr4THK6kPNe85xIlFSV mdRk4u6NFSiKualBTp6qPuzPLU6r0myjFT6TQaS3CGrTKh+qdz6Su7hpLbn9fqXZVU1hvy+n0MsR EtKBERBAiIgCJOfLjA95EEiIiAIiIAiIggj1nmV38Sox/KbrmpopEdTsJ5s8v2hV1VNHUdyd5ESZ 5hJERBgkdYEmRAJiREggmREnpJJ2IidAgNFn1bggYnOAJMRIIEiDEklbE8xEiIIJiIkASDEdJIRM 9/6Jf/J1P/rM+fn0H0S/+Tqf/WZZR/yIh7H2kRE9Q4EREAREQBERAEREAREQBERAEREATJbI5uri q6kZOlc9hOlxcCiMDBc8genqZ1TVoXUctjcypqM5rsKZKM5pf11LRES0uEREAREQBERAEx8UsV4h YVKBxqIyp7GbIkNXVmD8urUnoVnpVBhkOCJSfVfSjhX/AOdRX0qf2M+Vnl1IOErFqdxEROCRERAu J6V4KVPg1kiMS7lnYdun9p5uJ6PFmQPbUUTQKdFRz5k75nL95HUdmx5KXAfveJWrfLAH/M7MlQcH s7dWDePVL6F59h/eRxRKtK14fasykeFrAHdjNvhn9tW9OpTKraUAzCn0wM/1ld9L97LUtbdyN1pi le3dwPE8G3QUQGUHYDJ/p/OfLXV1Uur17lz5mbPsJ9HxELZcAoio/wBrdksxGS2Cck/0nypHPAOO 8UVbrEVm9InsavF0lR0lZytX1URvuNp2n1dOWaClzMpEmWVAxAB3xkys6Al6NM1q6U1wCxwMyk0W QK31HO3mEh7HUFeSRN/UFS6YrnYBd/STYn7Y0yPK4wT2E43H+Yqf6jLWjlLlCBnO2/rKJK9D4eho jK2Ju+fqcmwGIHIGQNiDOlwqpcVFXOkNtmc5endXM0lZtGq7w6Uq4+8MH3mWa6XnsaqH7pDADnMk ro6Jx5fiLq+rU+a+fH5idber4T7/AAsMN7TlEslFSVmUxk4vMjrcUfCfI+BhlfacpqpEXNLwT8a/ B/eZSCDgzinJ+7LdFlWK0lHZ/lhERLCoSQSpBBwRIiBexLMWYseZkREbBviIlgUw23Tb3lYIEREA REQBERAJZSpwZEEknc5iAIiUqvops3pIk1FXYMV3U1VdPRZnkk6iSeZkT5ypNzm5PidpWGIiJwSI jEQGTHSJEEExIiATHKREAs7BmBChcdBKxEEkxIjEECTIiATEgxBPAmI6QeUggSBESSSZ9H9EaTNe VqwxpVcH5z5vlPsfojRC2datvqZsflLqCvURzLY+jiInpHAiIgCIiAIiIAiIgCIiAIiIAnC5uVoL gYLkcu3qZFzciguBgueQ7epnnsdyXOWPPP6/9f0y16+Xqx3MeIxGXqx38hSVrmuNROCcnPM/r9dZ 7A2GJ51jTLVNZGyjaejIwkbQzPiMHG0HJ8RERNZsEREAREQBERAEREArUprVpsjgFWGCDPz/AIzw tuGXekZam26Nj+U/Qpk4jYU+IWjUH2J3VscjKa1PPHtJTsfm0TRe2dWxuWo1lwwOx7jvM885q2jL RERIIsdrWk1a6pU0GWZwAO82cXqPccaqhwAQ4TA9Npz4PTNTilDDBdJ1lj0A3nXhiPdcepkNltZc s3XG8rb1b7C2KvFLmzS9FLr6SU6FNWdKZVSrHfCjf+k1WFNrivc3AVwLiuKI0tyGcn+QmKxqMbm/ v6hfNNGIdfxHYT0KQFhwdazppqLSLg6tyz7Aj5CVzvsi2Cvq+1/nzPL+kF8b3itTBzTpfZpg7YE8 4VCKLU8bEg5lCSSSZEujHKkjNJuUnJm20BRihIORnY5mueZbNprr74npz3cBPNStyOJbiTtjlvIi bCBO9of8ZSP8QnCdrT/NUj/EJzP3Wd0vfXeVuP8AMVP9RkUnNOqjjBIOd5Nx/mKn+ozmDhge05pq 9NLsOqjtVb7fU0Xqql0wXO+Cc95nmq+wXp1PvOuph2mWRQd6ce4nEK1WVuZosnxX0Hk40kd5xqp4 dRl7HEqDgg9pqvBr8OsOTjf3h9Wrfn6ErrUWv6v5P8RliIlpQWR2puHXmDkTvcIKiC4TkThveZp3 t6qjNKp+7fnK6ia663XkXUpJ3py2fyZwiXrUmo1SjdJSdppq6KpRcXZiIiSQAcHOM+hiIgCSBk7k CREAk4wMZ9ZERAEREECIiAIiIAmO9fknzmsnAJM8uo5qVCx6zDj6uWnlXE6RWRJPKRPGOhJiMwBI kyIIQiJIgkj5REQEiYxESCBEZiAJEmBsYFyJMtV0+ISunB3wvIekpJJsDERAJkRmIIsTEiTAHPlP 0PgtD6vwi3TOcrq5d58Lw22N5f0aIBILb47T9JVQqhRyAxNeFjvI5lyJiIm05EREAREQBERAEREA REQBM11dCgulcFzyHb1i6uxQXSuDUPIdvWeaSQSzElz+v1/vyx4jEZerHfyMWJxOXqQ38iSxBLMS XPf9f+vfkRM+ZuUqiljk8p39T8h+v1/ITFFX1Zgir6s22ikUyxGM8ponOgNNFRnPXlOk9amrRSPY pq0EhEROywREQBERAEREAREQBERAPL4zwenxOhkYWuo8rf2M+DuLepbVmpVUKuvMGfqE8rjfCKfE bZnVcV0HlI6+kzVqObrLc6jKx8BE6VaNShUKVEZGHMETnMB2elwhaQa6q1WKinRYr6k7SeEGnSW8 rVFJ0USFI6E7f3kWlQUuCXpNMFqjKgbt1/tL0VqUfo7cVQyhK1VUI6nG8ret+8vjw+JeyoluFLTF XS91cBNJ5ED/ANy/Hbl0b6iroaSkNhd8bYG/t/WehYL4VeyFVqb0rW3auy+/9+U+ZuKvj3FSrpC6 mJAHISuKcql+Xr9iZvLC3FnKIiaDOSDgg9p6qHUgPcTyZ6Nq2qgB22noez52m48zmR3iInrnInW2 /wAzT/1Ccp0t/wDM0/8AUJxU9x9xZS/yR70Lj/MVP9RnOdbn/M1P9RnKKXuLuJq/5Jd7Nd3ipRo1 RtldOn2mSa6mKlhTbkaZ047zJOaPutcm/M7xOs0+aXkJqT7SwqA/9Mgg/wBplmmycCqUbk4KxWXV zLhqMO+vlfHQzRLOpR2U8wcSBp2ByO5lqd9UUNNOxESxXChs7E4lYINY/wARahR+8p7/ACmSXpVD TqK46GdbpBrFVP3b7iVR6ksvB7fQ0S/chn4rf0ZniIlpnEREEiIiCBERBIiIgCIiAIiIBnu6mmnp HMzzwJ2uX11j2G05TwcXV6Sq+SOlsJEmRMwQkyJMAjnERBOwlijKASMA7j1k0mCVVcjIB5SGOok9 IuLlZMSIIESeUiAIiTAuRJiBAIiTEXJuRERBNxERBFxETta273VzTo092Y4kom59J9ErP97eN/oU T6qZ7G0Sys6dBPujc9zNE9OlDJFIpbuIiJYBERAEREAREQBERAE4XNwtCkTkajyk17gUhgbt2nkV Kj1Khdzlug7fr9bzJiMRkWWO5jxOJ6NZY7kajqLMSXO5J/X695ZF1bnlFOmWPp1P6/X9++NPy5D+ /wCv+J58YN6s82EG9WAMcxjsP1+v5CXpoXqAevb9frcyFUs36/X6yZqoLhsKeXXvNVOGZmunDM0a eURE9E9IREQSIiIAiIgCIiAIiIAiIgCIiAeXxjg9PidHIwtdR5W7+hnwlxQqW1ZqVVSrqcEGfp88 /ifCLfiVM6101QPK45iZ61DPqtzqMrHx1YVaPALZDtTq1WYeuNpdqYaz4ba0wxqVGLkHkcnH9p34 3w+vaGxstRqAJgY5aiek1eDVP0hpUXTxvqtEYVOmF/3nkyeVXfazWld27kceKVRTt7tgVSpUqiiF UfdUf+p89NvE6qvc+Gh8lMadjtnr/PMxSaXuXZXVleQiIlpxcsmkHLgkdMGbbNfL5dRzzyNsiYJ3 tamiup5jtL8PPJVTIex6MSSRjlvIn0BWJ0t/8xT/ANQnOdLf/MU/9QnFX3JdzLaP+SPeibr/ADVX /UZyna72u6v+ozjJh7qIq+/LvNSYqcPdeRptqz39Jlmu1w9CtSO2Rq1e0yTinpKS7fRFlbWEH2eT YkqxVwwOCDnaREtKLmm9UF1qqPK4zt0maax9rYNnnSOQfTtMkqo6Ry8tPz4F2I1ln/tr9fmIiJaU CabZg6vQb7/w+8zQDggzmccysd055JXJdSjlW5g4kTXVxc25rAYZMAjuO8ySISzLXcmrDLLTZ7CI idlYiIgCIiAIiIAiIgCc6z6KRPXpOkw3tTLBB03MoxNTo6bfE6SuZs7xIifPnVhERAYiMRAERGN4 BMSIggREQSIiBBNxEmRBAiIMDcSYiA2RESYFxiIzEggifWfRXhhUG9qLz2p/3M8ThHDX4jeKmGFI buw6T9Bp01pU1RAAqjAAmvDU7vMyJPgWiIm44EREAREQBERAEREATPcXApjSu7GRc3IpjSu7TzXq FicHJPM/r9fOZK+IUOrHcx4jEqHVjuTUqkkgHJPM/r9fORTp6j6dT+v1/eETJ/X6/X56APury/X6 /W2GKcndnnxi5vNIAfdXl+v1+trhMkAc+/6/XUyyJtgcupxz/X/JlwByUbfr9ZmlQNUYcwq7aV/9 /wDE7UNwSBt+Lv8A8SgAxyyDyH4v+P176F3Ub59Zppx1/Pz88dVKOv5+fnjMREvNAiIgCIiAIiIA iIgCIiAIiIAiIgCBziWpjNRds7zicssWyYq7SKXdrb3jinWp6kBG3aeDWsanCjxTiOWbUMUiD3P9 p9IpzVZxgYyZzqKHpeG4DK3MHlPNrU4znGjxsvlq/Q1RnlTn3n5WTqYk8zvLUioqYbGDtluQ9Z9R xf6MFmavY4350v8AafLVKb0nKVFKsNiCInTcHZlCaJKEKGyCCcc5SInFibEwNiJEQQesjakU9xLT PaNmjjHIzRPo6Us8FI5aE6W/+Yp/6hOc7WiNUukCjODk+wk1fcl3Msor9yPeib3a9rD+IzhO1261 Lyq6nKliROR0nOMjsJ0tkRP3mabEg1XpkfvF057TMRhiOxmi0Ph3Ib4h8P5zjXQU6zoDkA4z3lcd Kr7l6lktaMexv0KRES0oNVkwLPSY7OvXkDMzKVYqdiJNNjTqK42KnM73iAVg6/C41CVe7V715F/v Uf8Ai/k/v5maIiWlAiIgHShVNKoGxkciDyMtc0RSq+U5VhkEzlny4wPed0qq9BqVU4xurczntKpJ xlnXxLoNSi4P4fnaZ4iJaUiIiCBERBIiIggREQCrNpUt2E8xialXJ6ma7yphAgO5mITyPaFW88i4 Ha5nVlpU6jKwZgG5g42nNiCukKBg5z1kRPOFyJMSJI3ERGYJJiRJzIIsOkiIkkkxIk9IIESIixNi ZERAsIiIAzBkyIHEmQYjEDvJmiys61/crRojLHmewnO3oVLmstKipZ22An3fB+D0+GUcnDV2Hmb+ wltKk5vsOW7Gnh1gnD7NKCbkbs2OZmuInpJJKyOBERJAiIgCIiAIiIAma5uRSGld2MRM+Jm4Q0M2 KqOENDzCWqvgHOeZkhAzYUbfr9frdE82KvZvieXGN7N8Tsq/dX5n9fr58uyJ0HLqcc/1/wAmImqn FM1UopnT4vKvLlt+v5ywAxyyDyH4v+P17ol0dS+Ouo+M8/LnBbv6TQAAMDlES2lqrl1LVXJiIlpc IiIAiIgCIiAIiIAiIgCIiAIiIAnSiDqJHQZiJVW9y3d5llL30TTwVbPMzmTk5iJkw6zYmrJ8LI6q P9uKInn8S4PbcRQ61C1AMK45iIm9xUlZlJ8bxHg11w9mLoWpA7VBy/4nm4iJ5teChKyO02MRESm5 NzXZN5mXuJtiJ7mBd6KOXuJr4btd/wDg39Iiaav+OXcy3D/5Y96Mp5n3kRE6WxVLc6UanhVUYjKh gSO8vdaRXfSQ2rfV/aIkZetmOukeTJ23OERE6OBNf76w/ipH+RiJTW0SfavoX4fVyjzT+WvoZIiJ cUCIiAIiIAiIgCIiBwEREAREQEIiIB59Wqj1A2jUQep2InFXKMWUDfuIifNTk5SbZY9HYrEROWHo TIiJBFxERAuIiIuLiIiLi5MREAjEREXFycREQLiOsRAuIiIII+U0WdnWvrgUaC5Y8+wiJ3TWaSTD Z9xwfg1PhlHJw1dvif8AsJ6kRPUjFRVkcCIidAREQBERAP/Z ------=_NextPart_000_001C_01BF7B2A.9AA1C880--
Michael Miller wrote: [describes intro computer science class]
We will make these changes in the next offering of this class:
- some how-to handouts on using IDLE - a book in addition to Learning Python; along the lines of "Thinking Like a Computer Scientist" or "Simple Program Design."
I'll take this as an opportunity to discuss my own limited experience with teaching Python to new programmers. I've taken a look at Learning Python and it doesn't seem to have the right structure if you're completely new to programming. My friend bought it and hasn't been too much use to her so far, though I expect it probably will be later on. I'll describe how I explained things to my friend (her 12 year old daughter was also present during some sessions). Note that she only just got started and therefore I can't promise this approach will work. I'll get a chance to teach a number of other people starting next month, however, so I'll gather more data then. I described interactive mode first. Since my friend is moderately familiar with command line environments this did not present too much of a problem with her. I described the basic idea of some various types; strings and integers, floats and longs. I didn't expect her to remember it all right away, but at least it'd give her an idea of what's possible. I also briefly mentioned lists. I also introduced variables and assignments in the interactive mode. I paid special attention to the fact that you can basically use any word (or number of words) as a variable. I also described some built in functions such as int(), string() and float(). They are always there and aren't too difficult to explain, so that was useful. As I'm not much of an interactive mode user myself (though certainly it's handy at times), I moved on to describe the editing environment. In my case it was Emacs, which can be horrendously complicated. The basics are pretty simple tough, and the python-mode is very nice (syntax highlighting and easy way to run the code in the editor to see immediate results). The menus under X helped a lot too. I showed how you can print stuff, such as the result of expressions. After that, I introduced boolean expressions (perhaps I should've done so already in the interactive mode). Then I moved on to 'if' statements, and block based indentation. All that was still pretty clear. 'for' loops presented more problems, though! I had quite a bit of difficulty to explain that the for block gets executed for each element in the sequence, and that the variable (for variable in foolist) refers to something else each time in the execution. I need to think on a better way to express things apparently-tricky thing. I explained how to write a program that adds all numbers from 1 to 9 (or any sequence of numbers, really), using the 'for' loop, and range(). This was also pretty difficult to get across. The concept of an extra variable 'sum' that keeps the current sum while doing a loop is not something people hit on by themselves! After that I had them change the function to multiply instead of doing additions (so you'd do factorials). Due to my explanation that you can use basically any word for a variable, and also focusing on the idea that you should use descriptive variables, my friend and her daughter automatically started to change variables like 'sum' to 'product', and not only changed the + to *. This was a rather nice thing to see, though I hope it wasn't because they taught the computer actually understands what they call these variables (I don't think they did think that though). Also tricky was to change the starting value of '0' to '1' (otherwise the result is '0'), but they both could figure this out for themselves. I then turned the factorial program they had produced into a function. In retrospect, I think I should've used the 'sum' program instead to produce a summing function, as it's probably conceptually easier to talk about. Like in my explanation of the 'why' of looping (you don't want to type 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9), I paid attention to the 'laziness' issue: good programmers are lazy (in the right way), and don't want to do boring stuff like lots of typing, and they definitely don't want to do the same thing twice. This seemed to work well. Still, I had some problems in making clear the concept of functions. I started too difficultly by using the 'factorial' approach; I fell back to a very simple function soon enough: def simple(): pass I explained the difference between side effect and return value: # return value def simple1(a): return a # side effect def simple2(a): print a # both def simple3(a): print a return a This turned out to be fairly tricky at first. The difference between things like: print simple1("hoi") and simple2("hoi") was not immediately clear. It got especially tricky when we saw: print simple2("hoi") The idea that Python returns 'None' when there is no return statement came as a confusing surprise; I should probably have introduced 'None' more early, but it's hard to motivate the existence of 'None' to a newbie, which is an argument against discussing None too early. The problem with the approach with 'simple' versus that of 'factorial' is that 'simple' does demonstrate the mechanism of functions, but not the *why* of it. 'factorial' is much more useful here. I still need to figure out the right way to introduce the motivation for functions along with the mechanism for functions without causing confusion on either. What was useful (again in the lazy programming context) was the concept of 'recipe'. A function does not get executed just by it being there; it is a recipe which you give to the computer. If you (daughter) give your mother a cookie recipe that doesn't mean immediately your mom will go and bake the cookies; you need to ask her to do so first. Unlike a mom, a computer will always obey (as long as the recipe is right), unfortunately, a computer is also very stupid so you have to be more detailed. :) This analogy seemed to work pretty well. That's about as far as I got this time. As you see you can spend lots of time with the basics. This is not because the mechanisms of the basics are generally hard to understand; they picked those up pretty well in general, though there were some problems. The problem is more one of *why* these mechanisms are useful. What you can do with them, and how you use them to do useful things. That's the real art of programming (along with the importance of a well readable and maintainable program structure). I hope my observations were of any use to you all; I'll post more once I have some more experience. And-I-didn't-even-*talk*-about-case-sensitivity-to-them-yet-ly yours, Martijn
Great post from the trenches, Martijn! Keep us informed about your pupils' progress. They seem to be the kind of audience that CP4E wants to cater to: people without particularly strong math skills or geek quotient. --Guido van Rossum (home page: http://www.python.org/~guido/)
Guido van Rossum wrote:
Great post from the trenches, Martijn! Keep us informed about your pupils' progress. They seem to be the kind of audience that CP4E wants to cater to: people without particularly strong math skills or geek quotient.
Thanks! Right, their geek quotient is fairly low, though I must admit I know my friend through a MUD, so that's pretty geekish. Still.. Unfortunately my vacation is over and they're over in the US, and I'm here again now. I'll try to keep it going through email, though, but it'll be harder. Still, I'll have some other students here shortly. The average 'geek quotient' here is higher, though. It'll be interesting to compare. Regards, Martijn
I've taken a look at Learning Python and it doesn't seem to have the right structure if you're completely new to programming. My friend bought it and hasn't been too much use to her so far, though I expect it probably will be later on.
I like your approach Michael. Play in the interactive mode, show how this can be used to test your understanding of the various operators (sometimes I call them "toys" -- not in a deprecatory sense at all), then go right into combining statements into function defs (programs). This is a great segue from Logo (which many kids learn), which likewise has the interactive command line, plus the short, atomic procedures. A few comments: * Those who can use IDLE will probably find it a lot easier than Emacs. The newest IDLE even prompts for correct syntax, plus the stepwise debugger (still rudimentary) gives beginners a fun way to watch simple programs in action. * You can do a lot in interactive mode. I like to show students that it's more fun to calculate at the command line than on a TI. In part because calculators don't have any savvy about alpha operations, like 3*"CAT" = "CATCATCAT". Yet modern mathematics is a lot about symbolic manipulation beyond what we do with numbers. * Keep in mind that you, as a teacher, can pre-write simple modules which, when loaded, do interesting things at the command line. Then invite students to look at your code. As another poster here mentioned, one way to learn programming is by learning to read programs. Like with any language, it's sometimes easier to scan stuff that's already "grammatically correct" (using your "recognition vocabulary") than to construct complete sentences yourself (which requires "recall" -- more challenging than "recog"). If you haven't taken a peak, I invite you to check out my 3 part essay integrating learning Python within in a math class context. The first section has really simple function defs, which then build in complexity (and move to object oriented) in the later pages: http://www.inetarena.com/~pdx4d/ocn/numerarcy0.html http://www.inetarena.com/~pdx4d/ocn/numerarcy1.html http://www.inetarena.com/~pdx4d/ocn/numerarcy2.html ... a fourth page is in the works. My approach dovetails with yours, in that I'm focussing on the interactive command line at the start. What's not explicit in these pages is a lot of nuts and bolts about "types" (int, float, string), which you get into, nor even data structures (list, tuple, dictionary). This isn't because I'd want to skip any of this. But first I want to get students to "buy in" by seeing Python do a lot of relevant work. Then we start dissecting the code, and phasing in the nuts and bolts stuff using a more "and by the way" approach. Start by showing relevance, then get into the guts of programming. I also like to stress that there's no "one right way" to implement an algorithm (although, yes, some are more efficient). That's why I take pains to show recursive _and_ non-recursive ways of doing the same thing (factorial, for example). Sometimes what you gain through recursion you trade away in decipherability. Other times, recursion is pretty elegant, and we hope students will appreciate this (especially if some of them are going to be CS majors someday, in which case we'll be turning them on to Scheme). Kirby
Kirby Urner wrote:
I've taken a look at Learning Python and it doesn't seem to have the right structure if you're completely new to programming. My friend bought it and hasn't been too much use to her so far, though I expect it probably will be later on.
I like your approach Michael.
That's Martijn -- Michael is the guy whose thread I hijacked; my apologies to Michael!
Play in the interactive mode, show how this can be used to test your understanding of the various operators (sometimes I call them "toys" -- not in a deprecatory sense at all), then go right into combining statements into function defs (programs).
This is a great segue from Logo (which many kids learn), which likewise has the interactive command line, plus the short, atomic procedures.
A few comments:
* Those who can use IDLE will probably find it a lot easier than Emacs. The newest IDLE even prompts for correct syntax, plus the stepwise debugger (still rudimentary) gives beginners a fun way to watch simple programs in action.
Probably true -- I myself am pretty unfamiliar with IDLE so far, though (was just toying with it again yesterday), so I went with Emacs. For basic editing both are fine, and I wasn't beyond that yet.
* You can do a lot in interactive mode. I like to show students that it's more fun to calculate at the command line than on a TI. In part because calculators don't have any savvy about alpha operations, like 3*"CAT" = "CATCATCAT". Yet modern mathematics is a lot about symbolic manipulation beyond what we do with numbers.
Yes, I showed things like this. You can do some amusing things there, which will keep the students happy.
* Keep in mind that you, as a teacher, can pre-write simple modules which, when loaded, do interesting things at the command line.
That's a good idea -- I'll try that approach.
Then invite students to look at your code. [learning by studying other programs] I did some of this, but it's probably good to put some more emphasis on this.
If you haven't taken a peak, I invite you to check out my 3 part essay integrating learning Python within in a math class context. [snip] http://www.inetarena.com/~pdx4d/ocn/numerarcy0.html http://www.inetarena.com/~pdx4d/ocn/numerarcy1.html http://www.inetarena.com/~pdx4d/ocn/numerarcy2.html
These links don't seem to work, unfortunately!
My approach dovetails with yours, in that I'm focussing on the interactive command line at the start. What's not explicit in these pages is a lot of nuts and bolts about "types" (int, float, string), which you get into, nor even data structures (list, tuple, dictionary).
This isn't because I'd want to skip any of this. But first I want to get students to "buy in" by seeing Python do a lot of relevant work. Then we start dissecting the code, and phasing in the nuts and bolts stuff using a more "and by the way" approach. Start by showing relevance, then get into the guts of programming.
The problem in my case is that there's no 'relevance' as such yet; your students are in a math class, mine are in a 'what's programming all about' class and don't have clear goals yet. [recursion versus procedural] I hadn't gotten far enough yet to introduce those concepts. :) Thanks for the feedback! Regards, Martijn
----- Original Message ----- From: Martijn Faassen <faassen@vet.uu.nl> To: Kirby Urner <pdx4d@teleport.com>
http://www.inetarena.com/~pdx4d/ocn/numerarcy0.html http://www.inetarena.com/~pdx4d/ocn/numerarcy1.html http://www.inetarena.com/~pdx4d/ocn/numerarcy2.html
These links don't seem to work, unfortunately!
removing the extra r: http://www.inetarena.com/~pdx4d/ocn/numeracy0.html http://www.inetarena.com/~pdx4d/ocn/numeracy1.html http://www.inetarena.com/~pdx4d/ocn/numeracy2.html
That's Martijn -- Michael is the guy whose thread I hijacked; my apologies to Michael!
And mine to you.
Probably true -- I myself am pretty unfamiliar with IDLE so far, though (was just toying with it again yesterday), so I went with Emacs. For basic editing both are fine, and I wasn't beyond that yet.
Yes, both are fine, and Emacs is a whole world unto itself (largely unexplored by me), for those wanting to branch off in this direction (I look at the computer world as full of branch points -- people do "random walks" and end up traversing entirely different pathways, meeting up from time to time).
like 3*"CAT" = "CATCATCAT". Yet modern mathematics is a lot about symbolic manipulation beyond what we do with numbers.
Yes, I showed things like this. You can do some amusing things there, which will keep the students happy.
Great to share these amusements! In my world, it's all about showing how computers have their distinct advantages over calculators -- one of which is this ability to work with strings. Calculators completely dominate in math curricula in my neck of the woods, and teachers endless debate about their merits -- but without seriously considering the computer as an alternative.[1] Here's some text from an article I had published in FoxPro Advisor (an Xbase mag) in March of last year: ===== I live in Greater Portland, the Silicon Forest. Intel, Tektronics, Hewlett-Packard, and Symantec all nest in this area, and Microsoft, near Seattle, isn't far away. The high tech sector is now Oregon's biggest employer. Oregon is like an oil-rich state on the Persian Gulf, except our wealth, being know-how, is more invisible -- and more renewable. I bring up matters economic to give some background as to why a "math makeover" might be taking hold here of necessity. Our employers need computer literate, fast learners who aren't math phobic. But then, what is mathematics exactly? Judging from your average textbook, it's pretty much what we remember from our own K-12 careers (arithmetic, geometry, algebra, and calculus). But open a VFP manual and you see operators like DTOT(), ASORT() and PACK. More than just number crunching or even algebraic manipulation, our business world needs full- fledged symbolic processing. Business rules pertain to alphanumeric, not just numeric content, and our character sets are becoming increasingly international. Nor is it just businesses that need large data tables, relational structures, and class hierarchies. Scientists and engineers work with the same tools. So why postpone much significant exposure to all of this content until college? Why aren't we teaching VRML, XML and SQL in eighth grade? Certainly many students are ravenous to learn this stuff, but when do their teachers have the time to learn it all themselves? [Kirby Urner, "Teaching Object-Oriented Programming with Visual FoxPro", FoxPro Advisor, Advisor Communications Inc., March 1999] =====
If you haven't taken a peak, I invite you to check out my 3 part essay integrating learning Python within in a math class context. [snip] http://www.inetarena.com/~pdx4d/ocn/numerarcy0.html http://www.inetarena.com/~pdx4d/ocn/numerarcy1.html http://www.inetarena.com/~pdx4d/ocn/numerarcy2.html
These links don't seem to work, unfortunately!
Yeah, I goofed. Guido has linked the above directly from the edu-sig page at python.org. His link goes to: http://www.inetarena.com/~pdx4d/ocn/cp4e.html (see Numeracy + Computer Literacy series)
Thanks for the feedback!
Sure.
Regards,
Martijn
Kirby [1] http://archives.math.utk.edu/hypermail/mathedcc/feb99/0090.html
On Tue, 22 Feb 2000, Martijn Faassen wrote:
'for' loops presented more problems, though! I had quite a bit of difficulty to explain that the for block gets executed for each element in the sequence, and that the variable (for variable in foolist) refers to something else each time in the execution. I need to think on a better way to express things apparently-tricky thing.
I had the same troubles. Anybody got any brainstorms on this one?
After that I had them change the function to multiply instead of doing additions (so you'd do factorials). Due to my explanation that you can use basically any word for a variable, and also focusing on the idea that you should use descriptive variables, my friend and her daughter automatically started to change variables like 'sum' to 'product', and not only changed the + to *. This was a rather nice thing to see, though I hope it wasn't because they taught the computer actually understands what they call these variables (I don't think they did think that though). Also tricky was to change the starting value of '0' to '1' (otherwise the result is '0'), but they both could figure this out for themselves.
And that's a math issue, not a programming issue. It's always nice to cross people over that gap, because math like that (0 times anything is 0) is something everyone is familiar with, and thus grounds the learning in something familiar.
That's about as far as I got this time. As you see you can spend lots of time with the basics. This is not because the mechanisms of the basics are generally hard to understand; they picked those up pretty well in general, though there were some problems. The problem is more one of *why* these mechanisms are useful. What you can do with them, and how you use them to do useful things. That's the real art of programming (along with the importance of a well readable and maintainable program structure).
You picked a good set of basics to start with. For some people, however, who are 'innumerate', Python's string facilities can be useful -- use looping over sequences to do various manipulations of words and sentences...
I hope my observations were of any use to you all; I'll post more once I have some more experience.
Yes, thank you. THis kind of discussion is very helpful. --------------------------------------------------------------------- | Dustin Mitchell )O( | ---------------------------------------------------------------------
On Tue, 22 Feb 2000, Martijn Faassen wrote:
'for' loops presented more problems, though! I had quite a bit of difficulty to explain that the for block gets executed for each element in the sequence and that the variable (for variable in foolist) refers to something else each time in the execution. I need to think on a better way to express things apparently-tricky thing.
I had the same troubles. Anybody got any brainstorms on this one?
Maybe the for loop problem you are having is because you didn't relate it to something the student can visualize. How about tying it to a real world example? While you might choose something else... let's say you have three dolls [Meg, Sandy, Pug] and you want to tie ribbons in each doll's hair... *for* each doll you will tie a ribbon. You line up the dolls and grabbing the first [Meg] you tie a ribbon in her hair. Done with Meg you grab the next doll and do the same thing. When you have done this with all of the dolls, you move on to the next thing you want to do. Once they have that concept, you can tell them about using numbers and testing for end conditions. Stephen
Stephen R. Figgins wrote: [we have problems explaining for loops]
Maybe the for loop problem you are having is because you didn't relate it to something the student can visualize. How about tying it to a real world example? [snip dolls example] Once they have that concept, you can tell them about using numbers and testing for end conditions.
That's a rather neat idea! I'll try that next time. :) Regards, Martijn
Dustin James Mitchell wrote:
On Tue, 22 Feb 2000, Martijn Faassen wrote: [snip]
[from sum to product]
Also tricky was to change the starting value of '0' to '1' (otherwise the result is '0'), but they both could figure this out for themselves.
And that's a math issue, not a programming issue.
I think it's also a programming issue. In math, you just *do* the product, while in my loop example, the product was done in multiple steps: compare: # sum # the simple math way sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 # the programming way sum = 0 for i in range(1, 10): sum = sum + i # product # the simple math way product = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 # the programming way product = 1 for i in range(1, 10): product = product * i As you can see, doing it the math way doesn't even raise the 0 versus 1 issue in this case, but doing it programmatically does.
It's always nice to cross people over that gap, because math like that (0 times anything is 0) is something everyone is familiar with, and thus grounds the learning in something familiar.
That's true, of course. You can appeal to lots of the basic math skills of people. My friend was amused by the idea that Python knew how to do complicated additions already, while she has to spend lots of time teaching the same to her daughters. :)
That's about as far as I got this time. As you see you can spend lots of time with the basics. This is not because the mechanisms of the basics are generally hard to understand; they picked those up pretty well in general, though there were some problems. The problem is more one of *why* these mechanisms are useful. What you can do with them, and how you use them to do useful things. That's the real art of programming (along with the importance of a well readable and maintainable program structure).
You picked a good set of basics to start with. For some people, however, who are 'innumerate', Python's string facilities can be useful -- use looping over sequences to do various manipulations of words and sentences...
Though I am rather dubious if it's worth or doable teaching programming to people innumaterate to the extent that they don't know basic addition and multiplication. Of course string and word manipulation is very interesting too, and I did some basic string concatenation (to demonstrate different types and the power of expression). I hadn't gotten to the more complicated function calling though (i.e. string.split()). I still have to explain 'import' at this point! :) Regards, Martijn
participants (7)
-
Dustin James Mitchell
-
Guido van Rossum
-
Kirby Urner
-
Martijn Faassen
-
Michael Miller
-
Robin Friedrich
-
Stephen R. Figgins