On Sat, Oct 6, 2012 at 12:17 PM, Ralf Gommers
<ralf.gommers@gmail.com> wrote:
On Fri, Oct 5, 2012 at 5:17 PM, Dan Goodman
<dg.gmane@thesamovar.net> wrote:
Hi,
numpy.set_printoptions(precision=...) doesn't affect single floats, even
if they are numpy floats rather than Python floats. Is this a bug or is
there some reason for this behaviour? I ask because I have a class that
derives from numpy.float64 and adds some extra information, and I'd like
to be able to control the precision. I could fix it to use the precision
set by numpy.set_printoptions, but then it would be inconsistent with
how numpy itself handles precision. Thoughts?
Do you mean scalars or arrays? For me set_printoptions only affects arrays and not scalars. Both float32 and float64 arrays work as advertised:
In [28]: np.set_printoptions(precision=4)
In [29]: np.array([np.float32(1.234567891011011101111012345679)])
Out[29]: array([ 1.2346], dtype=float32)
In [30]: np.array([np.float64(1.234567891011011101111012345679)])
Out[30]: array([ 1.2346])
In [31]: np.set_printoptions(precision=8)
In [32]: np.array([np.float32(1.234567891011011101111012345679)])
Out[32]: array([ 1.23456788], dtype=float32)
In [33]: np.array([np.float64(1.234567891011011101111012345679)])
Out[33]: array([ 1.23456789])
But for scalars it doesn't work:
In [34]: np.float32(1.234567891011011101111012345679)
Out[34]: 1.2345679
In [35]: np.float64(1.234567891011011101111012345679)
Out[35]: 1.2345678910110112
In [36]: np.set_printoptions(precision=4)
In [37]: np.float32(1.234567891011011101111012345679)
Out[37]: 1.2345679
In [38]: np.float64(1.234567891011011101111012345679)
Out[38]: 1.2345678910110112
Ralf
It also does not affect zero-dimensional (i.e. scalar) arrays (e.g. array(1.2345)):
In [1]: x = array(1./3)
In [2]: x
Out[2]: array(0.3333333333333333)
In [3]: set_printoptions(precision=3)
In [4]: x
Out[4]: array(0.3333333333333333)
In [5]: type(x)
Out[5]: numpy.ndarray
`y` is a 1-d array, so this works as expected:
In [6]: y = array([1./3])
In [7]: y
Out[7]: array([ 0.333])
Warren
_______________________________________________
NumPy-Discussion mailing list
NumPy-Discussion@scipy.org
http://mail.scipy.org/mailman/listinfo/numpy-discussion