![](https://secure.gravatar.com/avatar/72902e7adf1c8f5b524c04a15cc3c6a5.jpg?s=120&d=mm&r=g)
2011/9/29 Grové <grove.steyn@gmail.com>
Hi Mark
Did you ever get to write:
date_as_datetime(datearray, hour, minute, second, microsecond, timezone='local', unit=None, out=None) and datetime_as_date(datetimearray, timezone='local', out=None) ?
I never got to these functions, no. I am looking for an easy way of using datetime[m] data to test for business
days and do half hourly comparisons.
I am using:
In [181]: np.__version__ Out[181]: '2.0.0.dev-aded70c'
Here's a stopgap solution for converting to dates, that works for a single np.datetime64: def my_datetime_as_date(dt, timezone = 'local'): s = np.datetime_as_string(np.datetime64(dt), timezone=timezone) e = s.find('T') if e != -1: s = s[:e] return np.datetime64(s, 'D')
my_datetime_as_date('now') numpy.datetime64('2011-09-30') my_datetime_as_date('2011-03-13T00:30Z') numpy.datetime64('2011-03-12') my_datetime_as_date('2011-03-13T00:30') numpy.datetime64('2011-03-13') my_datetime_as_date('2011-03-13T00:30Z', timezone='UTC') numpy.datetime64('2011-03-13')
Cheers, Mark
Regards
Grové Steyn
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion