
On Thu, Apr 1, 2010 at 12:46 AM, Anne Archibald peridot.faceted@gmail.comwrote:
On 1 April 2010 02:24, Charles R Harris charlesr.harris@gmail.com wrote:
On Thu, Apr 1, 2010 at 12:04 AM, Anne Archibald <
peridot.faceted@gmail.com>
wrote:
On 1 April 2010 01:59, Charles R Harris charlesr.harris@gmail.com
wrote:
On Wed, Mar 31, 2010 at 11:46 PM, Anne Archibald peridot.faceted@gmail.com wrote:
On 1 April 2010 01:40, Charles R Harris charlesr.harris@gmail.com wrote:
On Wed, Mar 31, 2010 at 11:25 PM, josef.pktd@gmail.com wrote: > > On Thu, Apr 1, 2010 at 1:22 AM, josef.pktd@gmail.com wrote: > > On Thu, Apr 1, 2010 at 1:17 AM, Charles R Harris > > charlesr.harris@gmail.com wrote: > >> > >> > >> On Wed, Mar 31, 2010 at 6:08 PM, josef.pktd@gmail.com wrote: > >>> > >>> On Wed, Mar 31, 2010 at 7:37 PM, Warren Weckesser > >>> warren.weckesser@enthought.com wrote: > >>> > T J wrote: > >>> >> On Wed, Mar 31, 2010 at 1:21 PM, Charles R Harris > >>> >> charlesr.harris@gmail.com wrote: > >>> >> > >>> >>> Looks like roundoff error. > >>> >>> > >>> >>> > >>> >> > >>> >> So this is "expected" behavior? > >>> >> > >>> >> In [1]: np.logaddexp2(-1.5849625007211563, > >>> >> -53.584962500721154) > >>> >> Out[1]: -1.5849625007211561 > >>> >> > >>> >> In [2]: np.logaddexp2(-0.5849625007211563, > >>> >> -53.584962500721154) > >>> >> Out[2]: nan > >>> >> > >>> > > >>> > Is any able to reproduce this? I don't get 'nan' in either > >>> > 1.4.0 > >>> > or > >>> > 2.0.0.dev8313 (32 bit Mac OSX). In an earlier email T J > >>> > reported > >>> > using > >>> > 1.5.0.dev8106. > >>> > >>> > >>> > >>> >>> np.logaddexp2(-0.5849625007211563, -53.584962500721154) > >>> nan > >>> >>> np.logaddexp2(-1.5849625007211563, -53.584962500721154) > >>> -1.5849625007211561 > >>> > >>> >>> np.version.version > >>> '1.4.0' > >>> > >>> WindowsXP 32 > >>> > >> > >> What compiler? Mingw? > > > > yes, mingw 3.4.5. , official binaries release 1.4.0 by David > > sse2 Pentium M >
Can you try the exp2/log2 functions with the problem data and see
if
something goes wrong?
Works fine for me.
If it helps clarify things, the difference between the two problem input values is exactly 53 (and that's what logaddexp2 does an exp2 of); so I can provide a simpler example:
In [23]: np.logaddexp2(0, -53) Out[23]: nan
Of course, for me it fails in both orders.
Ah, that's progress then ;) The effective number of bits in a double
is
53 (52 + implicit bit). That shouldn't cause problems but it sure looks suspicious.
Indeed, that's what led me to the totally wrong suspicion that denormals have something to do with the problem. More data points:
In [38]: np.logaddexp2(63.999, 0) Out[38]: nan
In [39]: np.logaddexp2(64, 0) Out[39]: 64.0
In [42]: np.logaddexp2(52.999, 0) Out[42]: 52.999000000000002
In [43]: np.logaddexp2(53, 0) Out[43]: nan
It looks to me like perhaps the NaNs are appearing when the smaller term affects only the "extra" bits provided by the FPU's internal larger-than-double representation. Some such issue would explain why the problem seems to be hardware- and compiler-dependent.
Hmm, that 63.999 is kinda strange. Here is a bit of code that might
confuse
a compiler working with different size mantissas:
@type@ npy_log2_1p@c@(@type@ x) { @type@ u = 1 + x; if (u == 1) { return LOG2E*x; } else { return npy_log2@c@(u) * x / (u - 1); } }
It might be that u != 1 does not imply u-1 != 0.
That does indeed look highly suspicious. I'm not entirely sure how to work around it. GSL uses a volatile declaration:
http://www.google.ca/codesearch/p?hl=en#p9nGS4eQGUI/gnu/gsl/gsl-1.8.tar.gz%7... On the other hand boost declares itself defeated by optimizing compilers and uses a Taylor series:
http://www.google.ca/codesearch/p?hl=en#sdP2GRSfgKo/dcplusplus/trunk/boost/b... While R makes no mention of the corrected formula or optimizing compilers but takes the same approach, only with Chebyshev series:
http://www.google.ca/codesearch/p?hl=en#gBBSWbwZmuk/src/base/R-2/R-2.3.1.tar...
Since, at least on my machine, ordinary log1p appears to work fine, is there any reason not to have log2_1p call it and scale the result? Or does the compiler make a hash of our log1p too?
Calling log1p and scaling looks like the right thing to do here. And our log1p needs improvement.
Chuck