## Spectral Leakage

Daniel Sank Google Quantum AI

November 26, 2015

#### 1 Fourier series

Consider a continuous signal x(t) measured over a time interval [-T/2, T/2]. This signal can be represented as a **Fourier series** 

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{i2\pi kt/T}$$
 (1)

where

$$c_k \equiv \frac{1}{T} \int_{-T/2}^{T/2} dt \, x(t) \, e^{-i2\pi kt/T} \,.$$
 (2)

The index k gives the frequency of each component in units of cycles of the signal over the measured interval. In other words, the term with k=1 has frequency k/T. This is important to remember, the frequency resolution of a Fourier series is precisely the inverse of the measurement time T. We call the frequencies  $\{k/T\}$  the **Fourier frequencies**.

A complex sinusoid with frequency equal to one of the Fourier frequencies has a delta function Fourier series. For example, the signal  $s(t) = \exp\left[i2\pi lt/T\right]$ has Fourier series  $c_k = \delta_{kl}$ .

#### 1.1 Shift in frequency

Consider a signal s(t) with Fourier series coefficients  $s_k$ . Multiplying s(t) by a complex exponential shifts the Fourier coefficients. If we construct a new signal

 $u(t) \equiv s(t) \exp[i2\pi lt/T]$ , then the Fourier series is

$$u_{k} = \int_{-T/2}^{T/2} s(t)e^{i2\pi lt/T}e^{-i2\pi kt/T}$$

$$= \int_{-T/2}^{T/2} s(t)e^{-i2\pi(k-l)t/T}$$

$$= c_{k-l}.$$
(3)

# 2 Non-commensurate frequency

Consider a signal  $x(t) = \exp[i2\pi\xi t/T]$  where  $\xi$  is an arbitrary real number. The Fourier series coefficients of this signal are

$$c_{k} = \frac{1}{T} \int_{-T/2}^{T/2} dt \, e^{i2\pi\xi t/T} e^{-i2\pi kt/T}$$

$$= \frac{1}{T} \left( \frac{\exp\left[i2\pi(\xi - k)t/T\right]}{i2\pi(\xi - k)/T} \right) \Big|_{-T/2}^{T/2}$$

$$= \frac{1}{T} \left( \frac{\exp\left[i\pi(\xi - k)\right] - \exp\left[-i\pi(\xi - k)\right]}{i2\pi(\xi - k)/T} \right)$$

$$= \frac{\sin\left(\pi(\xi - k)\right)}{\pi(\xi - k)} . \tag{4}$$

This function has several important properties. First, if  $\xi$  is an integer, then all  $c_k = \delta_{\xi k}$ . This is not surprising because if  $\xi$  is an integer then x(t) precisely matches one of the component functions  $\exp(i2\pi kt/T)$ . This situation is illustrated by the black curve in Figure 1 where we have put  $\xi = 0$ . The underlying  $\sin(\pi x)/(\pi x)$  function goes to zero at

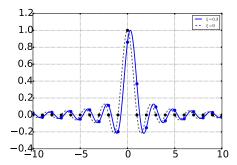


Figure 1: Fourier series of a complex sinusoid  $\exp{(i2\pi\xi t/T)}$  for integer and non-integer frequencies. Lines show the  $\sin(\pi x)/(\pi x)$  function for  $\xi=0$  (black) and  $\xi=0.2$  (blue). The dots indicate the values of the curves at the Fourier frequencies.

every k except for k=0. If  $\xi$  is not an integer then the  $\sin(\pi x)/(\pi x)$  function shifts such that  $c_k \neq 0$  for all k. This is illustrated by the blue curve in Figure 1 where we have used  $\xi=0.2$ . Note that most of the amplitude of the signal sits near the real frequency  $\xi$ , but has leaked into neighboring frequency bins. This phenomenon, wherein a signal at a precise frequency  $\xi$  shows up with amplitude at other bins nearby is called spectral leakage. In summary, given a complex sinusoid at a frequency  $\xi$  not commensurate with the measurement window, the Fourier series leaks into the bins near  $\xi$  according to

### 3 Widows