Robert Kern wrote:
D.Hendriks (Dennis) wrote:
According to (for instance) http://en.wikipedia.org/wiki/Weibull_distribution the Weibull distribution has two parameters: lambda > 0 is the scale parameter (real) and k > 0 is the shape parameter (real). However, the numpy.random.weibull function has only a single 'a' parameter (except for the size parameter which indicates the size of the array to fill with values - this is NOT a parameter of the distribution itself). My question is how this 'a' parameter translates to the Weibull distribution as it 'normally' is and how to sample the distribution when I have the lambda and k parameters?
lambda * numpy.random.weibull(k)
Thanks for the quick replay. However, when I look at the image of the probability density function at http://en.wikipedia.org/wiki/Weibull_distribution I see a red line and a green line, both with k=2. The red line is for lambda=0.5 and the green for lambda=1.0. The green line is not only half the height of the red one (while double the lambda factor!), but also has its mean a bit more to the right. Looking at the formulas on the same page, this makes sense. All of this makes me doubt the correctness of the formula you proposed...