hi guys I have a set of face images with which i want to do face recognition using Petland's PCA method.I gathered these steps from their docs 1.represent matrix of face images data 2.find the adjusted matrix by substracting the mean face 3.calculate covariance matrix (cov=A* A_transpose) where A is from step2 4.find eigenvectors and select those with highest eigenvalues 5.calculate facespace=eigenvectors*A when it comes to implementation i have doubts as to how i should represent the matrix of face images? using PIL image.getdata() i can make an array of each greyscale image. Should the matrix be like each row contains an array representing an image? That will make a matrix with rows=numimages and columns=numpixels cavariancematrix =A *A_transpose will create a square matrix of shape(numimages,numimages) Using numpy.linalg.eigh(covariancematrix) will give eigenvectors of same shape as the covariance matrix. I would like to know if this is the correct way to do this..I have no big expertise in linear algebra so i would be grateful if someone can confirm the right way of doing this RoyG