I have a function that operates over a 1D array, to return an array of a similar size. To use it in a 2D fashion I would have to do something like the following:
for row in range(np.size(arr, 0): arr_out[row] = func(arr[row]) for col in range(np.size(arr, 1): arr_out[:, col] = func(arr[:, col])
I would like to generalise this to N dimensions. Does anyone have any suggestions of how to achieve this? Presumably what I need to do is build an iterator, and then remove an axis:
# arr.shape=(2, 3, 4) it = np.nditer(arr, flags=['multi_index']) it.remove_axis(2) while not it.finished: arr_out[it.multi_index] = func(arr[it.multi_index]) it.iternext()
If I have an array with shape (2, 3, 4) this would allow me to iterate over the 6 1D arrays that are 4 elements long. However, how do I then construct the iterator for the preceding axes?