On Sat, Nov 28, 2009 at 6:18 AM, Sebastian <sebas0@gmail.com> wrote:
On Sat, Nov 28, 2009 at 1:01 AM, <josef.pktd@gmail.com> wrote:
On Fri, Nov 27, 2009 at 9:44 PM, Wayne Watson <sierra_mtnview@sbcglobal.net> wrote:
Joseph, That got it by the fig problem but there is yet another one. value is not defined on the very long line: range = ... Wayne
(values is the data array, ... no idea about scientificstat.standardDeviation)
Sebastian's example is only part of a larger script that defines many of the variables and functions that are used.
If you are not yet familiar with these examples, maybe you look at the self contained examples in the matplotlib docs. At least that's what I do when I only have a rough idea about what graph I want to do but don't know how to do it with matplotlib. I usually just copy a likely looking candidate and change it until it (almost) produces what I want. For example look at histogram examples in
http://matplotlib.sourceforge.net/examples/index.html
Josef
josef.pktd@gmail.com wrote:
On Fri, Nov 27, 2009 at 9:05 PM, Sebastian <sebas0@gmail.com> wrote:
... you need to create a figure, before you can use it
fig = pylab.figure()
Josef
ax = fig.add_subplot(1,1,1) pylab.title(r'\Large BCG NO radio distribution $ \rm{TITLE}$') n, bins, patches = pylab.hist(values, bins=math.sqrt(len(values)),
range=(numpy.mean(values)-3*scientificstat.standardDeviation(values),numpy.mean(values)+3*scientificstat.standardDeviation(values)), normed=1, facecolor='y', alpha=0.5) ax.set_xlabel(r'\Large$ \rm{values}$') ax.set_ylabel(r'\Large Delatavalue/Value')
gausx=numpy.arange(numpy.mean(Value)-3*scientificstat.standardDeviation(Value),numpy.mean(Value)+3*scientificstat.standardDeviation(bpty_plt),0.1)
gaus=normpdf(gausx,numpy.mean(Value),scientificstat.standardDeviation(Value)) pylab.plot(gausx,gaus, color='red', lw=2) ax.set_xlim(-1.5, 1.5) ax.grid(True)
Sebastian wrote:
> Did you try using the parameter range? > I do something like this. > regards > > ax = fig.add_subplot(1,1,1) > pylab.title(r'\Large BCG NO radio distribution $ \rm{TITLE}$') > n, bins, patches = pylab.hist(values, > bins=math.sqrt(len(values)), > > > range=(numpy.mean(values)-3*scientificstat.standardDeviation(values),numpy.mean(values)+3*scientificstat.standardDeviation(values)), > normed=1, facecolor='y', alpha=0.5) > ax.set_xlabel(r'\Large$ \rm{values}$') > ax.set_ylabel(r'\Large Delatavalue/Value') > > > > gausx=numpy.arange(numpy.mean(Value)-3*scientificstat.standardDeviation(Value),numpy.mean(Value)+3*scientificstat.standardDeviation(bpty_plt),0.1) > > > gaus=normpdf(gausx,numpy.mean(Value),scientificstat.standardDeviation(Value)) > pylab.plot(gausx,gaus, color='red', lw=2) > ax.set_xlim(-1.5, 1.5) > ax.grid(True) > > > On Fri, Nov 27, 2009 at 4:38 PM, Christopher Barker > <Chris.Barker@noaa.gov <mailto:Chris.Barker@noaa.gov>> wrote: > > josef.pktd@gmail.com <mailto:josef.pktd@gmail.com> wrote: > > On Fri, Nov 27, 2009 at 12:57 PM, Skipper Seabold > <jsseabold@gmail.com <mailto:jsseabold@gmail.com>> wrote: > > >> This kind of info might be useful to other newcomers > >> somewhere... <http://www.scipy.org/History_of_SciPy>? > Thoughts > on > >> posting this on the wiki here? > > > > I also agree. It will improve with the newly redesigned > website > for scipy.org <http://scipy.org> > > However, I cannot find the link right now for the development > version of > > the new website. > > Feel free to crib whatever you want from my post for that -- or > suggest > a place for me to put it, and I'll do it. I'm just not sure > where it > should go at this point. > > -Chris > > > -- > Christopher Barker, Ph.D. > Oceanographer > > Emergency Response Division > NOAA/NOS/OR&R (206) 526-6959 voice > 7600 Sand Point Way NE (206) 526-6329 fax > Seattle, WA 98115 (206) 526-6317 main reception > > Chris.Barker@noaa.gov <mailto:Chris.Barker@noaa.gov> > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org <mailto:NumPy-Discussion@scipy.org> > http://mail.scipy.org/mailman/listinfo/numpy-discussion > > > > ------------------------------------------------------------------------ > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@scipy.org > http://mail.scipy.org/mailman/listinfo/numpy-discussion > > -- Wayne Watson (Watson Adventures, Prop., Nevada City, CA)
(121.015 Deg. W, 39.262 Deg. N) GMT-8 hr std. time) Obz Site: 39° 15' 7" N, 121° 2' 32" W, 2700 feet
350 350 350 350 350 350 350 350 350 350 Make the number famous. See 350.org The major event has passed, but keep the number alive.
Web Page: <www.speckledwithstars.net/>
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
-- Wayne Watson (Watson Adventures, Prop., Nevada City, CA)
(121.015 Deg. W, 39.262 Deg. N) GMT-8 hr std. time) Obz Site: 39° 15' 7" N, 121° 2' 32" W, 2700 feet
350 350 350 350 350 350 350 350 350 350 Make the number famous. See 350.org The major event has passed, but keep the number alive.
Web Page: <www.speckledwithstars.net/>
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
Chris I',m using the package Scientific.Stats to calculate the standard deviation. I believe it is from here: http://dirac.cnrs-orleans.fr/plone/software/scientificpython/ I use the Scientific.Stats package for the standard deviation calculation because back when I wrote the code I realized that numpy's standard deviation seems to assume that you have all the distribution (the parent population),while I think the Scientific.Stats is more accurate for smaller samples. But maybe there is an equivalent numpy standard deviation. If I recall OK the difference is an (n-1) instead of an (n) in the formula. For larger samples both the numpy and the Scientific.Stats standard deviation shouldn't be too different
numpy std and var have a ddof option to adjust the degrees of freedom. ddof=0 by default, but you can set ddof=1 to get denominator (n-1) there was a long discussion on bias and bias correction on the mailing list a few months ago. Josef
. So I use the range to specify the values to bin over. It seems you might want your range parameter to be different. I'm choosing the range to be +/- 3-sigma, and that way ignore values that are too extreme so my bins a more concentrated about the distribution. OK so I also have to add the following import line in the code, too:
import Scientific.Statistics as scientificstat
Sebas
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion