
On Wed, Feb 26, 2020 at 6:09 PM Robert Kern <robert.kern@gmail.com> wrote:
On Wed, Feb 26, 2020 at 5:27 PM <josef.pktd@gmail.com> wrote:
great another object array
np.asarray([round(x_i.item()) for x_i in np.array([1, 2.5, 2e20, 2e200])]) array([1, 2, 200000000000000000000,
199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896], dtype=object)
I would rather have numpy consistent with numpy than with python
Since round() (and the __round__() interface) is part of Python and not numpy, there is nothing in numpy to be consistent with. We only implement __round__() for the scalar types.
Maybe I misunderstand I'm using np.round a lot. So maybe it's a question whether and how it will affect np.round. Does the following change with the proposal? np.round(np.array([1, 2.5, 2e20, 2e200])) array([1.e+000, 2.e+000, 2.e+020, 2.e+200]) np.round(np.array([1, 2.5, 2e20, 2e200])).astype(int) array([ 1, 2, -2147483648, -2147483648]) np.round(np.array([2e200])[0]) 2e+200 np.round(2e200) 2e+200 round(2e200) 199999999999999993946624442502072331894900655091004725296483501900693696871108151068392676809412503736055024831947764816364271468736556969278770082094479755742047182133579963622363626612334257709776896 Josef "around 100" sounds like "something all_close(100)"
-- Robert Kern _______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@python.org https://mail.python.org/mailman/listinfo/numpy-discussion