why not using something like numpy.repeat?

In [18]: B = numpy.random.rand(4,3)
In [19]: A = numpy.repeat(B[:,:,numpy.newaxis],2,axis=2)
In [20]: B.shape
Out[20]: (4, 3)
In [21]: A.shape
Out[21]: (4, 3, 2)
In [22]: numpy.all(A[:,:,0] == A[:,:,1])
Out[22]: True

hth,
L.


On Fri, Apr 25, 2008 at 12:09 PM, Matthieu Brucher <matthieu.brucher@gmail.com> wrote:


2008/4/25, tournesol <tournesol33@gmail.com>:
Hi All.


I just want to conver Fortran 77 source to
Python.

Here is my F77 source.

        DIMENSION A(25,60,13),B(25,60,13)

        open(15,file='data.dat')
        DO 60 K=1,2
        READ(15,1602) ((B(I,J),J=1,60),I=1,25)
    60 CONTINUE
  1602 FORMAT(15I4)

        DO 63 K=1,10
        DO 62 I=1,25
        DO 62 J=1,60
        A(I,J,K)=B(I,J)
    62 CONTINUE
    63 CONTINUE
        END

Q1: Fortran-contiguous is ARRAY(row,colum,depth).
     How about the Python-contiguous ? array(depth,row,colum) ?


Default is C-contiguous, but you can you Fortran contiguous arrays.
 

Q2: How can I insert 1D to a 2D array and make it to
     3D array. ex:) B:25x60 ==> A: 10X25X60

I don't understand what you want to do, but broadcasting allows copying several instances of an array into another one.

Matthieu
--
French PhD student
Website : http://matthieu-brucher.developpez.com/
Blogs : http://matt.eifelle.com and http://blog.developpez.com/?blog=92
LinkedIn : http://www.linkedin.com/in/matthieubrucher

_______________________________________________
Numpy-discussion mailing list
Numpy-discussion@scipy.org
http://projects.scipy.org/mailman/listinfo/numpy-discussion




--
Lorenzo Bolla
lbolla@gmail.com
http://lorenzobolla.emurse.com/