On Mon, Jan 29, 2018 at 10:44 PM, Allan Haldane <allanhaldane@gmail.com> wrote:

On 01/29/2018 05:59 PM, josef.pktd@gmail.com wrote:

On Mon, Jan 29, 2018 at 5:50 PM, <josef.pktd@gmail.com <mailto: josef.pktd@gmail.com>> wrote:

On Mon, Jan 29, 2018 at 4:11 PM, Allan Haldane <allanhaldane@gmail.com <mailto:allanhaldane@gmail.com>> wrote:

On 01/29/2018 04:02 PM, josef.pktd@gmail.com <mailto:josef.pktd@gmail.com> wrote: > > > On Mon, Jan 29, 2018 at 3:44 PM, Benjamin Root < ben.v.root@gmail.com <mailto:ben.v.root@gmail.com> > <mailto:ben.v.root@gmail.com <mailto:ben.v.root@gmail.com>>> wrote: > > I <3 structured arrays. I love the fact that I can access data by > row and then by fieldname, or vice versa. There are times when I > need to pass just a column into a function, and there are times when > I need to process things row by row. Yes, pandas is nice if you want > the specialized indexing features, but it becomes a bear to deal > with if all you want is normal indexing, or even the ability to > easily loop over the dataset. > > > I don't think there is a doubt that structured arrays, arrays with > structured dtypes, are a useful container. The question is whether they > should be more or the foundation for more. > > For example, computing a mean, or reduce operation, over numeric element > ("columns"). Before padded views it was possible to index by selecting > the relevant "columns" and view them as standard array. With padded > views that breaks and AFAICS, there is no way in numpy 1.14.0 to compute > a mean of some "columns". (I don't have numpy 1.14 to try or find a > workaround, like maybe looping over all relevant columns.) > > Josef

Just to clarify, structured types have always had padding bytes, that isn't new.

What *is* new (which we are pushing to 1.15, I think) is that it may be somewhat more common to end up with padding than before, and only if you are specifically using multi-field indexing, which is a fairly specialized case.

I think recfunctions already account properly for padding bytes. Except for the bug in #8100, which we will fix, padding-bytes in recarrays are more or less invisible to a non-expert who only cares about dataframe-like behavior.

In other words, padding is no obstacle at all to computing a mean over a column, and single-field indexes in 1.15 behave identically as before. The only thing that will change in 1.15 is multi-field indexing, and it has never been possible to compute a mean (or any binary operation) on multiple fields.

from the example in the other thread a[['b', 'c']].view(('f8', 2)).mean(0)

(from the statsmodels usecase: read csv with genfromtext to get recarray or structured array select/index the numeric columns view them as standard array do whatever we can do with standard numpy arrays )

Oh ok, I misunderstood. I see your point: a mean over fields is more difficult than before.

Or, to phrase it as a question:

How do we get a standard array with homogeneous dtype from the corresponding elements of a structured dtype in numpy 1.14.0?

Josef

The answer may be that "numpy has never had a way to that", even if in a few special cases you might hack a workaround using views.

That's what your example seems like to me. It uses an explicit view, which is an "expert" feature since views depend on the exact memory layout and binary representation of the array. Your example only works if the two fields have exactly the same dtype as each other and as the final dtype, and evidently breaks if there is byte padding for any reason.

Pandas can do row means without these problems:

>>> pd.DataFrame(np.ones(10, dtype='i8,f8')).mean(axis=0)

Numpy is missing this functionality, so you or whoever wrote that example figured out a fragile workaround using views.

Once upon a time (*) this wasn't fragile but the only and recommended way. Because dtypes were low level with clear memory layout and stayed that way, it was easy to check item size or whatever and get different views on it. e.g. https://mail.scipy.org/pipermail/numpy-discussion/2008-December/039340.html (*) pre-pandas, pre-stackoverflow on the mailing lists which was for me roughly 2008 to 2012 but a late thread https://mail.scipy.org/pipermail/numpy-discussion/2015-October/074014.html "What is now the recommended way of converting structured dtypes/recarrays to ndarrays?"

I suggest that if we want to allow either means over fields, or conversion of a n-D structured array to an n+1-D regular ndarray, we should add a dedicated function to do so in numpy.lib.recfunctions which does not depend on the binary representation of the array.

I don't really want to defend an obsolete (?) usecase of structured dtypes. However, I think there should be a decision about the future plans for whether dataframe like usages of structure dtypes or through higher level classes or functions are still supported, instead of removing slowly and silently (*) the foundation for this use case, either support this usage or say you will be dropping it. (*) I didn't read the details of the release notes And another footnote about obsolete: Given that I'm the only one arguing about the dataframe_like usecase of recarrays and structured dtypes, I think they are dead for this specific usecase and only my inertia and conservativeness kept them alive in statsmodels. Josef

Allan

Josef

Allan

> > Cheers! > Ben Root > > On Mon, Jan 29, 2018 at 3:24 PM, <josef.pktd@gmail.com <mailto:josef.pktd@gmail.com> > <mailto:josef.pktd@gmail.com <mailto:josef.pktd@gmail.com>>> wrote: > > > > On Mon, Jan 29, 2018 at 2:55 PM, Stefan van der Walt > <stefanv@berkeley.edu <mailto:stefanv@berkeley.edu> <mailto:stefanv@berkeley.edu <mailto:stefanv@berkeley.edu>>> wrote: > > On Mon, 29 Jan 2018 14:10:56 -0500, josef.pktd@gmail.com <mailto:josef.pktd@gmail.com> > <mailto:josef.pktd@gmail.com

<mailto:josef.pktd@gmail.com>> wrote: > > Given that there is pandas, xarray, dask and more, numpy > could as well drop > any pretense of supporting dataframe_likes. Or, adjust > the recfunctions so > we can still work dataframe_like with structured > dtypes/recarrays/recfunctions. > > > I haven't been following the duckarray discussion carefully, > but could > this be an opportunity for a dataframe protocol, so that we > can have > libraries ingest structured arrays, record arrays, pandas > dataframes, > etc. without too much specialized code? > > > AFAIU while not being in the data handling area, pandas defines > the interface and other libraries provide pandas compatible > interfaces or implementations. > > statsmodels currently still has recarray support and usage. In > some interfaces we support pandas, recarrays and plain arrays, > or anything where asarray works correctly. > > But recarrays became messy to support, one rewrite of some > functions last year converts recarrays to pandas, does the > manipulation and then converts back to recarrays. > Also we need to adjust our recarray usage with new numpy > versions. But there is no real benefit because I doubt that > statsmodels still has any recarray/structured dtype users. So, > we only have to remove our own uses in the datasets and unit tests. > > Josef > > > > > Stéfan > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org> <mailto:NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org>> > https://mail.python.org/mailman/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion> > <https://mail.python.org/mail man/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion>> > > > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org> <mailto:NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org>> > https://mail.python.org/mailman/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion> > <https://mail.python.org/mail man/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion>> > > > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org> <mailto:NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org>> > https://mail.python.org/mailman/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion> > <https://mail.python.org/mail man/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion>> > > > > > _______________________________________________ > NumPy-Discussion mailing list > NumPy-Discussion@python.org <mailto:NumPy-Discussion@pytho n.org> > https://mail.python.org/mailman/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion> >

_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@python.org <mailto:NumPy-Discussion@python.org> https://mail.python.org/mailman/listinfo/numpy-discussion <https://mail.python.org/mailman/listinfo/numpy-discussion>

_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@python.org https://mail.python.org/mailman/listinfo/numpy-discussion

_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@python.org https://mail.python.org/mailman/listinfo/numpy-discussion