numpy.vectorize fails, howto avoid hardcoding parameters?
Hi, I am trying to create a function that calculates the integral of another function. The integral function should later be used in scipy.optimize.leastsq(f, ...), so ideally it should have the format: def f(x, *param) so that it works for a variable number of parameters. While my code works for a fixed number of parameters I cannot get it to work with a variable number of parameters. It seems that numpy.vectorize fails here. Is there a different/better way to do this? from scipy.integrate import quad import numpy as np def integrand_function(x, a, b, c): result = a*x**2 + np.exp(b*x) + np.cos(a*c) return result def define_integral(f, lower, upper): assert(lower < upper) def function(a, b, c): result = quad(f, lower, upper, args=(a, b, c))[0] return result return np.vectorize(function) def integrand_function_param(x, *param): a, b, c = param result = a*x**2 + np.exp(b*x) + np.cos(a*c) return result def define_integral_param(f, lower, upper): assert(lower < upper) def function(a, *param): print(param) result = quad(f, lower, upper, args=(a, param))[0] return result return np.vectorize(function) a = np.array([1,2,3,4]) print(integrand_function(1,2,3,4)) # 21.9400368894 f = define_integral(integrand_function, 0.0, 2.0) print(f(a, 1,2)) # [ 8.22342909 10.41510219 16.30939667 16.7647227 ] print(integrand_function_param(1,2,3,4)) # 21.9400368894 fp = define_integral_param(integrand_function_param, 0.0, 2.0) print(fp(a, 1,2)) # ValueError: mismatch between python function inputs and received arguments # fp should later be used in scipy.optimize.leastsq(fp, ... Any help is very appreciated! Alexander
On Mon, Aug 2, 2010 at 3:35 PM, Alex Kraus <alex_work@live.de> wrote:
Hi,
I am trying to create a function that calculates the integral of another function. The integral function should later be used in scipy.optimize.leastsq(f, ...), so ideally it should have the format:
def f(x, *param)
so that it works for a variable number of parameters. While my code works for a fixed number of parameters I cannot get it to work with a variable number of parameters. It seems that numpy.vectorize fails here.
Is there a different/better way to do this?
from scipy.integrate import quad import numpy as np
def integrand_function(x, a, b, c): result = a*x**2 + np.exp(b*x) + np.cos(a*c) return result
def define_integral(f, lower, upper): assert(lower < upper)
def function(a, b, c): result = quad(f, lower, upper, args=(a, b, c))[0] return result return np.vectorize(function)
def integrand_function_param(x, *param): a, b, c = param result = a*x**2 + np.exp(b*x) + np.cos(a*c) return result
def define_integral_param(f, lower, upper): assert(lower < upper)
def function(a, *param): print(param) result = quad(f, lower, upper, args=(a, param))[0] return result return np.vectorize(function)
a = np.array([1,2,3,4])
print(integrand_function(1,2,3,4)) # 21.9400368894
f = define_integral(integrand_function, 0.0, 2.0) print(f(a, 1,2)) # [ 8.22342909 10.41510219 16.30939667 16.7647227 ]
print(integrand_function_param(1,2,3,4)) # 21.9400368894
fp = define_integral_param(integrand_function_param, 0.0, 2.0) print(fp(a, 1,2)) # ValueError: mismatch between python function inputs and received arguments
vectorize cannot infer correctly the number of arguments with *params see http://projects.scipy.org/scipy/ticket/422 the solution that I used in scipy.stats.distributions was to explicitly specify the number of input arguments. nin = ... (I don't remember all the details) Josef
# fp should later be used in scipy.optimize.leastsq(fp, ...
Any help is very appreciated! Alexander
_______________________________________________ NumPy-Discussion mailing list NumPy-Discussion@scipy.org http://mail.scipy.org/mailman/listinfo/numpy-discussion
participants (2)
-
Alex Kraus
-
josef.pktd@gmail.com