
Building Stream Processing
Applications

Amit Ramesh Qui Nguyen

Yelp’s Mission
Connecting people with great

local businesses.

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

Data processing

measurements
from a sensor

clicking on ads

Data processing

measurements
from a sensor

clicking on ads

average value in
the last minute

total clicks on a
day

Batch
Finite chunk of data
Operations defined over the entire input

Data processing: Batch or stream

8

Batch
Finite chunk of data
Operations defined over the entire input

Stream
Unbounded stream of events flowing in
Events are processed continuously
(possibly with state)

Data processing: Batch or stream

9

Why stream processing over batch?
● Lower latency on results
● Most data is unbounded, so streaming model is more

flexible

Why stream processing over batch?
● Lower latency on results
● Most data is unbounded, so streaming model is more

flexible

Day 12 Day 13

Our evolution

Our evolution

Our evolution

Our evolution

mrjob

Our evolution

Our evolution

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

Example problem: ad campaign metrics

Ad Yelp

ad {
 id: 1200834,
 campaign_id: 2001,
 user_id: 9zkjacn81m,
 timestamp: 1490732147
}

view {
 id: 1200834,
 timestamp: 1490732150
}

click {
 id: 1200834,
 timestamp: 1490732168
}

Metrics (views, clicks) for each
campaign over time

Ad Yelp

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

Source of
streaming data

Stream processing pipelines

Stream
processing

engine
Storage

Data sink

Stream processing pipelines

Stream
processing

engine
Storage

Data sink
Source of

streaming data

Types of operations
1. Ingestion
2. Stateless transforms
3. Stateful transforms
4. Keyed stateful transforms
5. Publishing

Operations: 1. Ingestion

Kafka
Reader Operation

Source

Operations: 1. Ingestion

Kafka
Reader Operation

Source
from pyspark.streaming.kafka import KafkaUtils

ad_stream = KafkaUtils.createDirectStream(
 streaming_context,
 topics=[‘ad_events’],
 kafkaParams={...},
)

Operations: 2. Stateless transforms

Operation Transform Operation

Operations: 2a. Stateless transforms

Filter

e.g., filtering

Operations: 2a. Stateless transforms

Filter

e.g., filtering

def is_not_from_bot(event):
 return event[‘ip’] not in bot_ips

filtered_stream = ad_stream.filter(is_not_from_bot)

Operations: 2b. Stateless transforms

Project

e.g., projection

Operations: 2b. Stateless transforms

Project

e.g., projection

desired_fields = [‘ad_id’, ‘campaign_id’]

def trim_event(event):
 return {key: event[key] for key in desired_fields}

projected_stream = ad_stream.map(trim_event)

Operations: 3. Stateful transforms
On windows of data

Transform

Sliding window

Operations: 3. Stateful transforms
On windows of data

Transform

Sliding window

Tumbling window

Operations: 3. Stateful transforms
e.g., aggregation

Sum 5 60 1 1 3 0 1 2

Operations: 3. Stateful transforms
e.g., aggregation

Sum 5 60 1 1 3 0 1 2

aggregated_stream = event_stream.reduceByWindow(
 func=operator.add,
 windowLength=4,
 slideInterval=3,
)

Operations: 4. Keyed stateful transforms

Shuffle

Group events by key (shuffle) within each window before
transform

Transform

Operations: 4a. Keyed stateful transforms

c_id: 1

views: 1

c_id: 2

views: 2

c_id: 1

views: 1

c_id: 2

views: 1

c_id: 2

views: 1

sum
views

by c_id

e.g., aggregate views by campaign_id

Operations: 4a. Keyed stateful transforms
e.g., aggregate views by campaign_id

aggregated_views = view_stream.reduceByKeyAndWindow(
 func=operator.add,
 windowLength=3,
 slideInterval=3,
)

c_id: 1

views: 1

c_id: 2

views: 2

c_id: 1

views: 1

c_id: 2

views: 1

c_id: 2

views: 1

sum
views

by c_id

Operations: 4b. Keyed stateful transforms
Can also be on more than one stream, e.g., join by id

Shuffle Join

Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

Join by
ad_id

Ad
ad_id: 11

c_id: 1

ad_id: 22

c_id: 2

ad_id: 22

time: 5

ad_id: 11

time: 7

ad_id: 11
ad: {
 c_id: 1
},
view: {
 time: 7
}

ad_id: 22
ad: {
 c_id: 2
},
view: {
 time: 5
}

Operations: 4b. Keyed stateful transforms

windowed_ad_stream = ad_stream.window(
 windowLength=2,
 slideInterval=2,
)
windowed_view_stream = view_stream.window(
 windowLength=2,
 slideInterval=2,
)
joined_stream = windowed_ad_stream.join(
 windowed_view_stream,
)

e.g., join by ad_id

Operations: 5. Publishing

Sink

File
writerOperation

Operations: 5. Publishing

results_stream.saveAsTextFiles(‘s3://my.bucket/results/’)

File
writerOperation

Sink

Operations: Summary
1. Ingestion
2. Stateless transforms: on single events

a. Filtering
b. Projections

3. Stateful transforms: on windows of events
4. Keyed stateful transforms

a. On single streams, transform by key
b. Join events from several streams by key

5. Publishing

Putting it together: campaign metrics

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

read

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ip: bot_id,
 ...
}
{
 ip: OK_id,
 ...
}

filter

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ip: bot_id,
 ...
}
{
 ip: OK_id,
 ...
}

project

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ip: OK_id,
 scoring: {
 ...
 },
 ...
}

project

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ip: OK_id,
 scoring: {
 ...
 },
 ...
}

join by ad id

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ad_id: 1,
 ad_data: ...
}
{
 ad_id: 1,
 view_data: ...
}

join by ad id

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ad_id: 1,
 ad_data: ...,
 view_data: ...,
}

transform

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ad_id: 1,
 campaign_id: 7,
 view: true,
 click: false
}

sum by campaign

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 ad_id: 1,
 campaign_id: 7,
 view: true,
 click: false
}
{
 ad_id: 23,
 campaign_id: 7,
 view: true,
 click: false
}

sum by campaign

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

{
 campaign_id: 7,
 views: 2,
 clicks: 0
}

write db.write(
 campaign_id=7,
 views=2,
 clicks=0,
)

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

Ad campaign metrics pipeline

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Why?

Horizontal scalability: Why?

Horizontal scalability: How?

Random
partitioning

Partitioning

Horizontal scalability: How?

Ad

read

read

read

filter

filter

filter

project

project

project

read

read

read

filter

filter

filter

project

project

project

Partitioning

Random
partitioning

project

project

project

join by ad id

Horizontal scalability: How?

Partitioning

project

project

project

join by ad id

Horizontal scalability: How?

Partitioning

Keyed partitioning

Horizontal scalability: watch out!

Hot spots / data skew

transform

sum by
campaign

transform

Horizontal scalability: watch out!

Hot spots / data skew

Keyed partitioning

transform

sum by
campaign

transform

Horizontal scalability: Summary
● Random partitioning for stateless transforms

● Keyed partitioning for keyed transformations

● Watch out for hot spots, and use appropriate
mitigation strategy

I. Why stream processing?
II. Putting an application together

Example problem
Components and data operations

III. Design principles and tradeoffs
Horizontal scalability
Handling failures
 Idempotency
 Consistency versus availability

Idempotency

Idempotency
An idempotent operation can be
applied more than once and have
the same effect.

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

project

write

What operations are idempotent?

Transforms: filters, projections, etc
No side effects!

Stateful operations

Ad filterread join by
ad id

transform

write

sum by
campaign

project

transform

write

filterread project

filterread project

project

write

Idempotent writes with unique keys

campaign_id = 7,
minute = 20,
views = 2

campaign
_id

minute views

7 20 2campaign_id = 7,
minute = 20,
views = 2

Writes that aren’t idempotent

campaign
_id

hour views

7 2 0

Writes that aren’t idempotent

campaign_id = 7,
hour = 2,
views += 1

campaign
_id

hour views

7 2 1

Writes that aren’t idempotent

campaign_id = 7,
hour = 2,
views += 1

campaign
_id

hour views

7 2 2campaign_id = 7,
hour = 2,
views += 1

Support for idempotency

campaign_id = 7,
hour = 2,
views += 1,
version = 1 campaign

_id
hour views

7 2 1campaign_id = 7,
hour = 2,
views += 1
version = 1

Idempotency in streaming pipelines
Both in output to data sink and in local state (joining,
aggregation)

Re-processing of events
- Some frameworks provide exactly once guarantees

Consistency vs. availability

Always a tradeoff between
consistency and availability
when handling failures

Consistency
Every read sees a current view of the data.

Availability
Capacity to serve requests

A = 9 A = 9

A = 3 A = 3

A = 3

A = 3

A = 9 A = 9

A = 9 A = 9

Consistency > availability

A = 3

A = 3

A = 9 A = 9

Consistency > availability A = 3

Error: write
unavailable

A = 9 A = 9

Availability > consistency

A = 3

A = 3

A = 9 A = 3

Availability > consistency

Not consistent:
3 != 9

Prioritizing consistency or availability
Applies to systems for both your data source and data
sink

Source

Stream
processing

engine

Data sink

Storage

Prioritizing consistency or availability
Applies to systems for both your data source and data
sink
● Some systems pick one, be aware
● Others let you choose

○ ex. Cassandra - how many replicas respond to
write?

Streaming applications run continuously

Prioritizing consistency or availability
Depends on the needs of your application

Metrics (views,
clicks) for each
campaign over time

Prioritizing consistency or availability
More consistency

Metrics (views,
clicks) for each
campaign over time

Prioritizing consistency or availability
More availability

Internal graphs
Metrics (views,
clicks) for each
campaign over time

Conclusion
● Stream processing: data processing with operations on

events or windows of events
● Horizontal scalability, as data will grow and change over

time
● Handle failures appropriately

○ Keep operations idempotent, for retries
○ Tradeoff between availability and consistency

www.yelp.com/careers/
We're Hiring!

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

