Building Stream Processing
Applications

Amit Ramesh Qui Nguyen
.
R
DEZEE®)
o|ana
L |LLE @DDED
L|BaA ORRER
E EEE goHd00A8
o e OOO00AS
o|aga e
i o O
s SorEEEEyEg [HEH T]

Yelp’s Mission
Connecting people with great
local businesses.

Ol <

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

imgfiip.com

Data processing: Batch or stream

& Batch
« o
) 4

Finite chunk of data

1

Operations defined over the entire input

Data processing: Batch or stream

Batch
Finite chunk of data
Operations defined over the entire input

Stream
Unbounded stream of events flowing in

Events are processed contlnuously
(possibly with state)

Why stream processing over batch?

e Lower latency on results

e Most data is unbounded, so streaming model is more
flexible

Why stream processing over batch?

e Lower latency on results

e Most data is unbounded, so streaming model is more
flexible

Day 12 Day 13

Our evolution

Our evolution

3 @O 4 @ 11:01

Q_ Thai Food

Price °°> OpenNow Order Delivery Order Picku

e — — ——— — —— — —
(Aroy Thai Bistro 1 mi N
EIE3E3E3 89 Reviews $ \
| 506 SW 4th Ave, Southwest Portland |
Thai
l Thai Lily Restaurant 7.5mi l
| g 52 Reviews $$ |
\ LN 13514 NW Comell Rd, Portland)
— e e e —— — — —— ——
“22 1. Thai Champa .6 mi
o L 168 Reviews $
£ 4 900 E Burnside St, Buckman
Thai, Food Trucks
2. Nong's Khao Man Gai .6 mi
S EIEIE3EIE 828 Reviews $
% 609 SE Ankeny St, Ste C, Industrial District
= %= Thai, Chicken Shop
» 3. E-San Thai Food Cart 2 mi
/ 17 Reviews $
@ Q @® A (]
Nearby Search Profile Activity Bookmarks

Our evolution
adn

REPORT

Our evolution
a

REPORT

Our evolution

o) custonerteads O

A Messages \
8 o i \/\/

30 Day Activity
Date Customer Leads

157 Wed, New 11, 2015 led, Nov 11,2015
oo Tue, Nev 10, 2015 Tus, Now 10, 2015

Men, Nov 9, 2015

24 ‘LAA,./‘ Mon, Now 9, 2015
s Shla e Sun,Nov s, 2015 Sun,Novs, 2015

Sat, Nov7, 2015 Sat, Nov 7, 2015
Fr, Nov 6,2015

Activity Foed i, Now 6, 2015
Thu, Nov 5, 2015 The, Nev 5, 2015
Wed, Nov 4, 2016

5 Aman s 30s rom Nosale, T4

checkedin to your business Ned, Now 4, 2015,

Our evolution

User Views @ Customerteads (@

Activity

?‘&9’1 :‘:STG Primary Care - Centennial. { « 1%

A Messages

B Reviews

3008y Actviy
oate oste Customer Loads

157 - W w2015 W o 1,201

—— Tue, Nov 10, 2015 Tue, Now 10, 2015

Z ficit! L hility 24 Mon, Nows, 2015 Men, Now 9,2015
p)
Cotamar s Sum, Nov 8,2015 Su, Now 8, 2015

Sat, Nov 7, 2015

Activity Foed 3 i Nov 6, Fri, Nov6, 2015
& Aman s 30s o Nashale, TN Tho, Nevs, 2015
checked in o your businss, Wed, Nov 4, 2015 Wed, Nov 3, 2015

Spark
Streaming

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

Example problem: ad campaign metrics

©ED
_—
£ R
~__

WIO=

ad |
id: 1200834,
campaign 1id: 2001,
user 1d: 9zkjacn8lm,
timestamp: 1490732147

view {
id: 1200834,
timestamp: 1490732150

click {
1id: 1200834,
timestamp: 1490732168

WIO=>
7

Metrics (views, clicks) for each
campaign over time

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

Stream processing pipelines

Source of
streaming data

~

(U

Stream
processing
engine

~

/

)

Data sink

5

Stream processing pipelines

Source of
streaming data

§@ kafka

a N
Stream
processing
engine
- /

.S‘pcrr‘l‘zZ
Streaming

)

Data sink

§s3 kafka

5

—_—

cassandra

Types of operations

Ingestion

Stateless transforms
Stateful transforms

Keyed stateful transforms

O1 s O8N =

Publishing

Operations: 1. Ingestion

§€ kafka 4

- Kafka
Reader

Operation

Operations: 1. Ingestion

§€ kafka a

- Kafka
Reader

Operation

from pyspark.streaming.kafka import KafkaUtils

ad_stream = KafkaUtils.createDirectStream(

streaming context,
topics=[‘ad_events’],
kafkaParams={...},

)

Operations: 2. Stateless transforms

Operation

LTransform}

Operation

Operations: 2a. Stateless transforms

£

e.g., filtering

Operations: 2a. Stateless transforms

Ea

def is not from bot(event):
return event[“ip’] not in bot_ips

e.g., filtering

filtered stream = ad _stream.filter(is_not_ from bot)

Operations: 2b. Stateless transforms

e.d., projection

.......{ Project}

Operations: 2b. Stateless transforms

e.g., projection

.......{ Project}

desired fields = [‘ad _id’, €‘campaign _id’]

def trim _event(event):
return {key: event[key] for key in desired fields}

projected stream = ad stream.map(trim _event)

Operations: 3. Stateful transforms

On windows of data

L Transform }

R S

Sliding window

Operations: 3. Stateful transforms

On windows of data

L Transform }

R S

Tumbling window

Operations: 3. Stateful transforms

e.g., aggregation

0113012[Sum } S}

R U

Operations: 3. Stateful transforms

e.g., aggregation

O113012£ Sum } 3) 6

aggregated stream = event stream.reduceByWindow(
func=operator.add,
windowlLength=4,
slideInterval=3,

)

Operations: 4. Keyed stateful transforms

Group events by key (shuffle) within each window before
transform

C N [N

(————— \(————— \(————— N

\

1

)\

| i /
Shuffle Transform

AV

Operations: 4a. Keyed stateful transforms

e.g., aggregate views by campaign_id

views: 1

p

N
sum

views

by c_id

AV

</

views: 1

N e e e e — — — — — —

Operations: 4a. Keyed stateful transforms

e.g., aggregate views by campaign_id
S 00— N O n \

c id: 1 c_id: 2 | c_id: 2 sum c id: 1 | c_id: 2
views

aggregated views = view_ stream.reduceByKeyAndwWindow(

func=operator.add,
windowlLength=3,
slideInterval=3,

)

Operations: 4b. Keyed stateful transforms

Can also be on more than one stream, e.g., join by id

= IR R
I E | 17 L |
I__/__/__ |

l | i I I
(ST =T ‘__“! | ' I
| ' | T
I__/__/L-__-/I Y i I[VAN !L A

Shuffle Join

Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

O T — ——— — — ——

——————————_————_—

ad_id: 11 ad id: 22
ad_id: 11 |ad id: 22
_id: id: ad: { ad: {

C 1 c_id: 2
- > Join by } c id: 1 \ c_id: 2
____________ ad_id view: { view: {
ad id: 22 | ad id: 11 time: 7 time: 5
< } }
time: 5 time: 7 \ y

—_— e ——— ——— —— — —

Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

windowed ad stream = ad_stream.window(
windowlLength=2,
slideInterval=2,

)

windowed view stream = view stream.window(
windowLength=2,
slideInterval=2,

)

joined stream = windowed ad stream.join(
windowed view stream,

)

Operations: 5. Publishing

Operation

File
writer

Sink

Operations: 5. Publishing

~

Operation File > ""’Eg
writer T

/ Sink

results _stream.saveAsTextFiles(“s3://my.bucket/results/’)

Operations: Summary

1. Ingestion
2. Stateless transforms: on single events
a. Filtering

b. Projections
3. Stateful transforms: on windows of events
4. Keyed stateful transforms

a. On single streams, transform by key

b. Join events from several streams by key
5. Publishing

Putting it together: campaign metrics

-
[read H filter H project

J
[read]—[filter]—[project]

(s |- |- ot

transform

transform —

=
et

)

sum by
campaign

>

g

T

-

_>
_>

-

read

ip: bot id,

-
.—[filter H project

J

)\
[read H filter H project

J

[read H filter H project]Z

project

{

[read H filter M join
adi

-
[read H filter H project
J

ip: OK id,
scoring: {

},

[read H filter H project]Z

}

project

[read H filter J—q join
adi

(e |{ | oot

(s |- |- ot

join by ad id

ad id: 1,

transform —

transform —

ad data:
sum b_3 }
campai¢ {
- ad id: 1,

view;data:

I _>

join by ad id

transform —

transform —

sum by
campai¢ }

—

ad id: 1,
ad data:
view data:

M 4

_>

transform {

ad id: 1,
campaign id: 7,
T] . .
prOjeCt jOin by sum b‘ Vlew : true V4

ad id campai¢

-

click: false

S

project

F\l i
i

transform —F———~ —»

project

sum by campaign

transform
transform

write

ad id: 1,
campaign id: 7,
view: true,
click: false

ad id: 23,
campaign id: 7,
view: true,
click: false

sum by campaign

transform
transform

write

campaign id: 7,
views: 2,
clicks: O

Wri-te db.write (

campaign_1id=7,

T —| write

views=2,
4 N\ .
sum by clicks=0 p

campaign

Ad campaign metrics pipeline

-
[read H filter H project

J
[read]—[filter]—[project]

(s |- |- ot

transform

transform —

=
et

)

sum by
campaign

>

g

T

-

writ

B

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Basic idea

Horizontal scalability: Why?

Website visitors

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr
15 M5 M5 15 MB 16 16 M6 Ak 17

Horizontal scalability: Why?

200k
150k
100k

50k

02 May 06:00 12:00 18:00 03 May 06:00 12:00 18:00 04 May 06:00 12:00 18:00

Horizontal scalability: How?

<D]] :
.
i 0B

Partitioning

§

NN N

Random
partitioning

Horizontal scalability: How?

Partitioning

(filter]—~ project:

(filter]——~ project:

(filter]—* project:

N ER

filter]——~ project |

partitioning

filter]——~ project |

filter]——~ project |

Horizontal scalability: How?

Partitioning

project

project

project

)

join by ad id

Horizontal scalability: How?

Partitioning

Keyed partitioning :

project

project

project

v

join by ad id

Horizontal scalability: watch out!

Hot spots / data skew

[transform

[transform —

e

<

_

sum by
campaign

~

Horizontal scalability: watch out!

Hot spots / data skew

/
sum by
I I campaign
Keyed partitioning I I I I : :
[transform [—
(S

Horizontal scalability: Summary

e Random partitioning for stateless transforms
e Keyed partitioning for keyed transformations

e Watch out for hot spots, and use appropriate
mitigation strategy

. Why stream processing?
1.

Putting an application together
Example problem
Components and data operations

Design principles and tradeoffs
Horizontal scalability
Handling failures

ldempotency

Consistency versus availability

ldempotency

ldempotency

An idempotent operation can be
applied more than once and have
the same effect.

[read H filter

s tr | ot |
(s |-{r o |

|

join by
ad id

[}

transform —

transform —

[\

)

sum by
campaign

— write

-
(s e |-

|

join by
ad id

s

(s |-{r o |

transform —

A‘ transform [—

[\

)

sum by
campaign

— write

What operations are idempotent?

» « Transforms: filters, projections, etc
No side effects!

S Stateful operations

-
(s e |-

|

join by
ad id

s

(s |-{r o |

transform —

A‘ transform [—

[\

)

sum by
campaign

e | write
_>

ldempotent writes with unique keys

campaign_id = 7,
minute = 20,

views = 2
campaign | minute |views
_id
2

campaign_id =7,
minute = 20,
views = 2

n

Writes that aren't idempotent

campaign [hour |views
id

2 o

Writes that aren't idempotent

campaign_id = 7,
hour = 2,

views += 1
campaign [hour |views
id

Writes that aren't idempotent

campaign_id = 7,
hour = 2,

views += 1
campaign [hour |views
id

campaign_id =7,

hour = 2,
views += 1

Support for idempotency

campaign_id =7,
hour = 2,
views += 1,

version = 1 campaign |hour |views
id

TN

VIEWS - = |
ver..on = 1

ldempotency in streaming pipelines

Both in output to data sink and in local state (joining,
aggregation)

Re-processing of events
- Some frameworks provide exactly once guarantees

Consistency vs. availability

Always a tradeoff between
consistency and availability
when handling failures

Consistency
Every read sees a current view of the data.

Availability
Capacity to serve requests

Consistency > availability A

3

Consistency > availability

Error: write
unavailable

Availability > consistency A

3

Availability > consistency

Not consistent:
31=9

Prioritizing consistency or availability

Applies to systems for both your data source and data

sink

- N
Stream
processing
engine
- /

—_—_—_~

Data sink

T I I S S - - .y

- s - - - - - .-

-_— e - - - - ..

Prioritizing consistency or availability

Applies to systems for both your data source and data
sink

e Some systems pick one, be aware
e Others let you choose
o ex. Cassandra-how many replicas respond to
write?

Streaming applications run continuously

Prioritizing consistency or availability

Depends on the needs of your application

- D
Metrics (views,

clicks) for each —
campaign over time

N\ 4 -~

Prioritizing consistency or availability

More consistency

£ N

Metrics (views,
clicks) for each
campaign over time

N J

Prioritizing consistency or availability

More availability

e N ~— — Internal graphs

Metrics (views, H
clicks) for each —> —>|
campaign over time

N\ 4 -~

Conclusion

e Stream processing: data processing with operations on
events or windows of events

e Horizontal scalability, as data will grow and change over
time

e Handle failures appropriately

o Keep operations idempotent, for retries
o Tradeoff between availability and consistency

AN
velpt s
0 fb.com/YelpEngineers
Q @YelpEngineering
@ engineeringblog.yelp.com

@ github.com/yelp

