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Yelp’s Mission
Connecting people with great
local businesses.
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Data processing: Batch or stream
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Data processing: Batch or stream

Batch
Finite chunk of data
Operations defined over the entire input

Stream
Unbounded stream of events flowing in

Events are processed contlnuously
(possibly with state)




Why stream processing over batch?

e Lower latency on results

e Most data is unbounded, so streaming model is more
flexible
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Our evolution
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e — — ——— — —— — —
( Aroy Thai Bistro 1 mi N
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Our evolution
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Our evolution
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Example problem: ad campaign metrics
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ad |
id: 1200834,
campaign 1id: 2001,
user 1d: 9zkjacn8lm,
timestamp: 1490732147

view {
id: 1200834,
timestamp: 1490732150

click {
1id: 1200834,
timestamp: 1490732168
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Metrics (views, clicks) for each
campaign over time
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Stream processing pipelines

Source of
streaming data
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Stream processing pipelines

Source of
streaming data

§@ kafka

a N
Stream
processing
engine
- /

.S‘pcrr‘l‘zZ
Streaming

)

Data sink

§s3 kafka

5

—_—

cassandra



Types of operations

Ingestion

Stateless transforms
Stateful transforms

Keyed stateful transforms

O1 s O8N =

Publishing



Operations: 1. Ingestion

§€ kafka 4

- Kafka
Reader

Operation




Operations: 1. Ingestion

§€ kafka a

- Kafka
Reader

Operation

from pyspark.streaming.kafka import KafkaUtils

ad_stream = KafkaUtils.createDirectStream(

streaming context,
topics=[ ‘ad_events’],
kafkaParams={...},

)



Operations: 2. Stateless transforms

Operation

LTransform}

Operation




Operations: 2a. Stateless transforms

£

e.g., filtering




Operations: 2a. Stateless transforms

Ea

def is not from bot(event):
return event[ “ip’] not in bot_ips

e.g., filtering

filtered stream = ad _stream.filter(is_not_ from bot)




Operations: 2b. Stateless transforms

e.d., projection

.......{ Project}




Operations: 2b. Stateless transforms

e.g., projection

.......{ Project}

desired fields = [‘ad _id’, €‘campaign _id’ ]

def trim _event(event):
return {key: event[key] for key in desired fields}

projected stream = ad stream.map(trim _event)




Operations: 3. Stateful transforms

On windows of data

______________________

L Transform }
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Sliding window



Operations: 3. Stateful transforms

On windows of data

______________________

L Transform }

R S

________

______________________

___________________

Tumbling window



Operations: 3. Stateful transforms

e.g., aggregation

______________________

0113012[ Sum } S}

R U

________



Operations: 3. Stateful transforms

e.g., aggregation

O113012£ Sum } 3) 6

aggregated stream = event stream.reduceByWindow(
func=operator.add,
windowlLength=4,
slideInterval=3,

)




Operations: 4. Keyed stateful transforms

Group events by key (shuffle) within each window before
transform

C N [ N

( ————— \( ————— \( ————— N
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________________

)\

| i /
Shuffle Transform
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Operations: 4a. Keyed stateful transforms

e.g., aggregate views by campaign_id

views: 1

p

N
sum

views

by c_id

AV

</

views: 1

N e e e e — — — — — —




Operations: 4a. Keyed stateful transforms

e.g., aggregate views by campaign_id
S 00— N O n \

c id: 1  c_id: 2 | c_id: 2 sum c id: 1 | c_id: 2
views

aggregated views = view_ stream.reduceByKeyAndwWindow(

func=operator.add,
windowlLength=3,
slideInterval=3,

)




Operations: 4b. Keyed stateful transforms

Can also be on more than one stream, e.g., join by id
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Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

O T — ——— — — ——

_——————_————_————_—

ad_id: 11 ad id: 22
ad_id: 11 |ad id: 22
_id: id: ad: { ad: {

C 1 c_id: 2
- > Join by } c id: 1 \ c_id: 2
____________ ad_id view: { view: {
ad id: 22 | ad id: 11 time: 7 time: 5
< } }
time: 5 time: 7 \ y

—_— e ——— ——— —— — —




Operations: 4b. Keyed stateful transforms
e.g., join by ad_id

windowed ad stream = ad_stream.window(
windowlLength=2,
slideInterval=2,

)

windowed view stream = view stream.window(
windowLength=2,
slideInterval=2,

)

joined stream = windowed ad stream.join(
windowed view stream,

)



Operations: 5. Publishing

Operation

File
writer

Sink



Operations: 5. Publishing

~

Operation File > ""’Eg
writer T

/ Sink

results _stream.saveAsTextFiles(“s3://my.bucket/results/’)



Operations: Summary

1. Ingestion
2. Stateless transforms: on single events
a. Filtering

b. Projections
3. Stateful transforms: on windows of events
4. Keyed stateful transforms

a. On single streams, transform by key

b. Join events from several streams by key
5. Publishing



Putting it together: campaign metrics
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[ read H filter H project
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read

ip: bot id,

-
.—[ filter H project
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[ read H filter H project
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project

{

[ read H filter M join
adi

-
[ read H filter H project
J

ip: OK id,
scoring: {

},

[ read H filter H project ]Z
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join by ad id

ad id: 1,

transform —

transform —

ad data:
sum b_3 }
campai¢ {
- ad id: 1,

view;data:

I _>




join by ad id

transform —

transform —

sum by
campai¢ }

—

ad id: 1,
ad data:
view data:

M 4

_>




transform {

ad id: 1,
campaign id: 7,
T ] . .
prOjeCt jOin by sum b‘ Vlew : true V4

ad id campai¢

-

click: false

S

project

F\l i
i

transform —F———~ —»

project




sum by campaign

transform
transform

write

ad id: 1,
campaign id: 7,
view: true,
click: false

ad id: 23,
campaign id: 7,
view: true,
click: false




sum by campaign

transform
transform

write

campaign id: 7,
views: 2,
clicks: O




Wri-te db.write (

campaign_1id=7,

T —| write

views=2,
4 N\ .
sum by clicks=0 p

campaign




Ad campaign metrics pipeline
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Horizontal scalability: Basic idea
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Horizontal scalability: Why?

Website visitors

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr
15 M5 M5 15 MB 16 16 M6 Ak 17



Horizontal scalability: Why?

200k
150k
100k

50k

02 May 06:00 12:00 18:00 03 May 06:00 12:00 18:00 04 May 06:00 12:00 18:00



Horizontal scalability: How?

<D]] :
.
i 0B

Partitioning

§

NN N

Random
partitioning



Horizontal scalability: How?

Partitioning

( filter ]—~ project:

( filter ]——~ project:

( filter ]—* project:

N ER

filter ]——~ project |

partitioning

filter ]——~ project |

filter ]——~ project |




Horizontal scalability: How?

Partitioning

project

project

project

)

join by ad id




Horizontal scalability: How?

Partitioning

Keyed partitioning :

project

project

project

v

join by ad id




Horizontal scalability: watch out!

Hot spots / data skew

[ transform

[ transform —

e

<

_

sum by
campaign

~




Horizontal scalability: watch out!

Hot spots / data skew

/
sum by
I I campaign
Keyed partitioning I I I I : :
[ transform [—
(S




Horizontal scalability: Summary

e Random partitioning for stateless transforms
e Keyed partitioning for keyed transformations

e Watch out for hot spots, and use appropriate
mitigation strategy
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ldempotency



ldempotency

An idempotent operation can be
applied more than once and have
the same effect.
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What operations are idempotent?

» « Transforms: filters, projections, etc
No side effects!

S Stateful operations
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ldempotent writes with unique keys

campaign_id = 7,
minute = 20,

views = 2
campaign | minute |views
_id
2

campaign_id =7,
minute = 20,
views = 2

n




Writes that aren't idempotent

campaign [hour |views
id

2 o




Writes that aren't idempotent

campaign_id = 7,
hour = 2,

views += 1
campaign [hour |views
id




Writes that aren't idempotent

campaign_id = 7,
hour = 2,

views += 1
campaign [hour |views
id

campaign_id =7,

hour = 2,
views += 1




Support for idempotency

campaign_id =7,
hour = 2,
views += 1,

version = 1 campaign |hour |views
id

TN

VIEWS - = |
ver..on = 1




ldempotency in streaming pipelines

Both in output to data sink and in local state (joining,
aggregation)

Re-processing of events
- Some frameworks provide exactly once guarantees



Consistency vs. availability



Always a tradeoff between
consistency and availability
when handling failures



Consistency
Every read sees a current view of the data.

Availability
Capacity to serve requests












Consistency > availability A

3




Consistency > availability

Error: write
unavailable




Availability > consistency A

3




Availability > consistency

Not consistent:
31=9




Prioritizing consistency or availability

Applies to systems for both your data source and data

sink

- N
Stream
processing
engine
- /

—_—_—_~

Data sink

T I I S S - - .y

- s - - - - - .-

-_— e - - - - ..



Prioritizing consistency or availability

Applies to systems for both your data source and data
sink

e Some systems pick one, be aware
e Others let you choose
o ex. Cassandra-how many replicas respond to
write?

Streaming applications run continuously



Prioritizing consistency or availability

Depends on the needs of your application

- D
Metrics (views,

clicks) for each —
campaign over time

N\ 4 -~




Prioritizing consistency or availability

More consistency

£ N

Metrics (views,
clicks) for each
campaign over time

N J




Prioritizing consistency or availability

More availability

e N ~—  — Internal graphs

Metrics (views, H
clicks) for each —> —>|
campaign over time

N\ 4 -~




Conclusion

e Stream processing: data processing with operations on
events or windows of events

e Horizontal scalability, as data will grow and change over
time

e Handle failures appropriately

o Keep operations idempotent, for retries
o Tradeoff between availability and consistency
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