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Abstract

1 Settings

Language: English

Duration: 30 min talk + Q/A

Audience level: Intermediate
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2 About me

I’'m student at the technical university of Vienna currently finishing my master thesis. I have known Python for a while and
it is one of my favorite languages.

Starting with my bachelor degree I specialized in compiler construction and computer languages in general which lead me
to the PyPy project. I'm currently finishing my master thesis and I'm happy to share my experience with you!

I’'m also very proud that I was accepted as a Google Summer of Code participant this year to implement the vectorization
algorithm for PyPy/RPython.

3 RPython’s number crunching optimization

The need for faster execution has driven CPU manufacturers to provide instructions to speed up Multimedia applications.
Single Instruction Multiple Data (SIMD) is the terminology for the new CPU instruction set extensions that provided
enhanced execution speed for numerical tasks. They are not only useful for multimedia applications but also for scientific
applications. In theory, given a single precision floating point operation in a loop, if the loop is vectorizable on SSE2 (x86
ISA extension) the loop executes 4 times faster.

Currently the preferred way of optimizing numerical intensive applications is to write the critical routine in a low level
language, compile it to the host computers target architecture and later invoke the routine in the language interpreter. SIMD
extensions have been around for quite a while. Today’s C/Fortran compiler optimization capabilities are astonishing but
there is a catch: Using a JIT compiler these optimized SIMD routines are black boxes.

There are not many JIT compilers that use SIMD instructions to compute arithmetic on the packed items in parallel.
Even less include this optimization in their production environment. Why don’t we provide the means to let the JIT compiler
utilize this opportunity to speedup the numerical kernels of NumPy? Why do only static ahead of time compiler vectorize
their loops?

In this session I will present the new vectorizing algorithm and data structures that are implemented in the RPython
backend. I will cover my journey on how to implement any optimization in the RPython backend, including any stumbling
blocks I came along and potentially any newcomers might also encounter. The following questions and many more will be
subject: Does it pay off to ”just in time” vectorize your numerical application? Let’s compare it to the conventional approach:
What are the benefits?

4 Requirements / Good to know

Understanding how language interpreters and JIT compilers function. If you have attended any compiler lecture this should
be sufficient to understand the presentation. It is an advantage (not required) if you understand how the RPython toolchain
works.



5 Target audience

Everyone interested in compiler optimizations, code generation and utilizing SIMD instructions. Newcomers that are inter-
ested in writing their own optimization (for RPython interpreters). Newcomers that want to understand how the optimization

in the RPython backend works.



