======================= Announcing bcolz 0.10.0 ======================= What's new ========== This is a cleanup-and-refactor release with many internal optimizations and a few bug fixes. For users, the most important improvement is the new-and-shiny context manager for bcolz objects. For example for the ctable constructor:: >>> with bcolz.ctable(np.empty(0, dtype="i4,f8"), ...: rootdir='mydir', mode="w") as ct: ...: for i in xrange(N): ...: ct.append((i, i**2)) ...: >>> bcolz.ctable(rootdir='mydir') ctable((100000,), [('f0', '<i4'), ('f1', '<f8')]) nbytes: 1.14 MB; cbytes: 247.18 KB; ratio: 4.74 cparams := cparams(clevel=5, shuffle=True, cname='blosclz') rootdir := 'mydir' [(0, 0.0) (1, 1.0) (2, 4.0) ..., (99997, 9999400009.0) (99998, 9999600004.0) (99999, 9999800001.0)] This is very useful for on-disk objects since it takes care of flushing the data automatically. It works with all the top-level functions as listed in: http://bcolz.blosc.org/reference.html#top-level-functions. For a complete list of changes check the release notes at: https://github.com/Blosc/bcolz/blob/master/RELEASE_NOTES.rst What it is ========== *bcolz* provides columnar and compressed data containers that can live either on-disk or in-memory. Column storage allows for efficiently querying tables with a large number of columns. It also allows for cheap addition and removal of column. In addition, bcolz objects are compressed by default for reducing memory/disk I/O needs. The compression process is carried out internally by Blosc, an extremely fast meta-compressor that is optimized for binary data. Lastly, high-performance iterators (like ``iter()``, ``where()``) for querying the objects are provided. bcolz can use numexpr internally so as to accelerate many vector and query operations (although it can use pure NumPy for doing so too). numexpr optimizes the memory usage and use several cores for doing the computations, so it is blazing fast. Moreover, since the carray/ctable containers can be disk-based, and it is possible to use them for seamlessly performing out-of-memory computations. bcolz has minimal dependencies (NumPy), comes with an exhaustive test suite and fully supports both 32-bit and 64-bit platforms. Also, it is typically tested on both UNIX and Windows operating systems. Together, bcolz and the Blosc compressor, are finally fulfilling the promise of accelerating memory I/O, at least for some real scenarios: http://nbviewer.ipython.org/github/Blosc/movielens-bench/blob/master/queryin... Other users of bcolz are Visualfabriq (http://www.visualfabriq.com/) the Blaze project (http://blaze.pydata.org/), Quantopian (https://www.quantopian.com/) and Scikit-Allel (https://github.com/cggh/scikit-allel) which you can read more about by pointing your browser at the links below. * Visualfabriq: * *bquery*, A query and aggregation framework for Bcolz: * https://github.com/visualfabriq/bquery * Blaze: * Notebooks showing Blaze + Pandas + BColz interaction: * http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-csv.ipynb * http://nbviewer.ipython.org/url/blaze.pydata.org/notebooks/timings-bcolz.ipy... * Quantopian: * Using compressed data containers for faster backtesting at scale: * https://quantopian.github.io/talks/NeedForSpeed/slides.html * Scikit-Allel * Provides an alternative backend to work with compressed arrays * https://scikit-allel.readthedocs.org/en/latest/bcolz.html Installing ========== bcolz is in the PyPI repository, so installing it is easy:: $ pip install -U bcolz Resources ========= Visit the main bcolz site repository at: http://github.com/Blosc/bcolz Manual: http://bcolz.blosc.org Home of Blosc compressor: http://blosc.org User's mail list: bcolz@googlegroups.com http://groups.google.com/group/bcolz License is the new BSD: https://github.com/Blosc/bcolz/blob/master/LICENSES/BCOLZ.txt Release notes can be found in the Git repository: https://github.com/Blosc/bcolz/blob/master/RELEASE_NOTES.rst ---- **Enjoy data!**