Dear All,The following is an example given in opencv regarding applying Contrast Limited Adaptive Histogram Equalization (CLAHE)import numpy as npimport cv2img = cv2.imread('tsukuba_l.png',0)clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))cl1 = clahe.apply(img)Here the parameter clipLimit =2.0In Skimage, CLAHE is perfored using exposure.equalize_adapthistFor instance, in this example, http://scikit-image.org/docs/dev/auto_examples/plot_ equalize.html img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.03) My question is that how to setup the clip_limit value in skimage for a corresponding case in opencvFor instance, in an example implemented using opencv, clipLimit is setup as 2.0; if I want to convert this implementation using skimagewhich value should I assign to clip_limit?According to the document looks like clip_limit between 0 and 1.clip_limit : float, optionalClipping limit, normalized between 0 and 1 (higher values give more contrast).while opencv does not have this limitation for clipLimitThanks,Yuanyuan
_______________________________________________
scikit-image mailing list
scikit-image@python.org
https://mail.python.org/mailman/listinfo/scikit-image