Hi everyone,
I have a question regarding the output from the
scipy.optimize.curve_fit function - in the following example:
"""
In [1]: import numpy as np
In [2]: from scipy.optimize import curve_fit
In [3]: f = lambda x, a, b: a * x + b
In [4]: x = np.array([0., 1., 2.])
In [5]: y = np.array([1.2, 4.6, 7.8])
In [6]: e = np.array([1., 1., 1.])
In [7]: curve_fit(f, x, y, sigma=e)
Out[7]:
(array([ 3.3 , 1.23333333]),
array([[ 0.00333333, -0.00333333],
[-0.00333333, 0.00555556]]))
In [8]: curve_fit(f, x, y, sigma=e * 100)
Out[8]:
(array([ 3.3 , 1.23333333]),
array([[ 0.00333333, -0.00333333],
[-0.00333333, 0.00555556]]))
"""
it's clear that the covariance matrix does not take into account the
uncertainties on the data points. If I do:
"""
popt, pcov = curve_fit(...)
"""
Then pcov[0,0]**0.5 is therefore not the uncertainty on the parameter,
so I was wondering how this should be scaled to give the actual
uncertainty on the parameter?
Thanks!
Tom
_______________________________________________
SciPy-User mailing list
SciPy-User@scipy.org
http://mail.scipy.org/mailman/listinfo/scipy-user