I'm using Sfepy for FE simulation of Poisson equation for electronics
components. I must use Sfepy mesh generator module for mesh because I have
to modify frequently the mesh, but I can't visualize the mesh. Anyone can
help me?

This example clearly illustrated a simple application of sfepy with Navier
Stokes problem.
http://sfepy.org/doc-devel/examples/navier_stokes/navier_stokes.html
The inlet/outlet definition:
region_1 = {
'name' : 'Inlet',
'select' : 'vertices by cinc0', # In
'kind' : 'facet',}region_2 = {
'name' : 'Outlet',
'select' : 'vertices by cinc1', # Out
'kind' : 'facet',}
ebc_1 = {
'name' : 'Walls',
'region' : 'Walls',
'dofs' : {'u.all' : 0.0},}ebc_2 = {
'name' : 'Inlet',
'region' : 'Inlet',
'dofs' : {'u.1' : 1.0, 'u.[0,2]' : 0.0},}
This only allows the velocity inlet normal to y axis. If I have an inlet
plane that is arbitrary, let say with normal fluid inlet velocity
(ux,uy,uz), how should I define the inlet boundary condition?
Moreover, is there any documentation to help me understanding following
functions? the syntax is quite different from the typical python one.
functions = {
'cinc0' : (lambda coors, domain=None: cinc(coors, 0),),
'cinc1' : (lambda coors, domain=None: cinc(coors, 1),),}

I am pleased to announce release 2015.4 of SfePy.
Description
-----------
SfePy (simple finite elements in Python) is a software for solving systems of
coupled partial differential equations by the finite element method or by the
isogeometric analysis (preliminary support). It is distributed under the new
BSD license.
Home page: http://sfepy.org
Mailing list: http://groups.google.com/group/sfepy-devel
Git (source) repository, issue tracker, wiki: http://github.com/sfepy
Highlights of this release
--------------------------
- basic support for restart files
- new type of linear combination boundary conditions
- balloon inflation example
For full release notes see http://docs.sfepy.org/doc/release_notes.html#id1
(rather long and technical).
Best regards,
Robert Cimrman on behalf of the SfePy development team
---
Contributors to this release in alphabetical order:
Robert Cimrman
Grant Stephens

Hello Robert,
I am trying to simulate a rectangular block with the fixed bottom and
loaded at the top by an area force.
I have following doubts. Please clarify
1.How to consider the area force.
2.Which elastic equation should I use? I am not finding any equation for
area loads.
3.I'm sharing my problem description file. Kindly look into it and help me
understand. I am very new to SfePy.
from sfepy.mechanics.matcoefs import lame_from_youngpoisson
from sfepy.discrete.fem.utils import refine_mesh
from sfepy import data_dir
# Tell SfePy to use our .mesh file
filename_mesh = data_dir + '/meshes/3d/block.mesh'
# Tell SfePy where u want to save the output
output_dir = '.'
# Material parameters.
young = 200000.0 # Young's modulus [MPa]
poisson = 0.26 # Poisson's ratio
options = {
'output_dir' : output_dir,
}
#Regions are used to define the boundary conditions, the domains of terms
and materials etc.
regions = {
'Omega' : 'all',
'Bottom' : ('vertices in (y=0)', 'facet'),
'Top':('vertices in (y=1)', 'facet'),
}
#Define constitutive parameters (e.g. stiffness, permeability, or
viscosity),
#Also other non-field arguments of terms (e.g. known traction or volume
forces).
materials = {
'Steel' : ({
'lam' : lame_from_youngpoisson(young, poisson)[0],
'mu' : lame_from_youngpoisson(young, poisson)[1],
},),
'Load' : ({'.val' : [0.0, -5.0,0.0]},),
}
#FE field.Here 'real' is datatype,'3' is dof per node, field is defined
over omega & '1' is approximation order
fields = {
'displacement': ('real', '3', 'Omega', 1),
}
#Here we use linear elastic spring equation
equations = {
'balance_of_forces' :
"""dw_lin_elastic_iso.2.Omega(Steel.lam, Steel.mu, v, u )
= dw_point_load.0.Top(Load.val, v)""",
}
# Specify the variables that use the FE approximation given by the
specified field
variables = {
'u' : ('unknown field', 'displacement', 0),
'v' : ('test field', 'displacement', 'u'),
}
#Since the bottom is fixed corresponding nodal displacement are zero
ebcs = {
'Fixed' : ('Bottom', {'u.all' : 0.0}),
}
#In SfePy, a non-linear solver has to be specified even when solving a
linear problem.
#The linear problem is/should be then solved in one iteration of the
nonlinear solver
solvers = {
'ls' : ('ls.scipy_direct', {}),
'newton' : ('nls.newton', {
'i_max' : 1,# Number of iterations
'eps_a' : 1e-6,
}),
}
Thanks in advance,
Nayan M