

Figure 1: A two mass system used to introduce the transfer matrix method (TMM).

1 TMM Analysis

The transfer matrix for a mass is

$$
U m=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
m s^{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and for a spring

$$
U s=\left[\begin{array}{ccc}
1 & \frac{1}{k} & 0 \tag{2}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where the state vector is

$$
z=\left[\begin{array}{c}
x \tag{3}\\
F \\
1
\end{array}\right]
$$

The two mass system shown in Figure 1 can be model as

$$
\begin{equation*}
\mathbf{z}_{\mathrm{end}}=\mathbf{U}_{\mathrm{m} 2} \mathbf{U}_{\mathrm{s}} \mathbf{U}_{\mathrm{F}} \mathbf{U}_{\mathrm{m} 1} \mathbf{z}_{\text {start }} \tag{4}
\end{equation*}
$$

where

$$
\begin{gather*}
U f=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -F \\
0 & 0 & 1
\end{array}\right] \tag{5}\\
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
m_{1} s^{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \tag{6}
\end{gather*}
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \tag{7}\\
m_{2} s^{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and the system boundary conditions give that

$$
\text { zend }=\left[\begin{array}{c}
x_{2} \tag{8}\\
0 \\
1
\end{array}\right]
$$

and

$$
\text { zstart }=\left[\begin{array}{c}
x_{1} \tag{9}\\
0 \\
1
\end{array}\right]
$$

The system transfer matrix can be defined as

$$
\begin{equation*}
\mathbf{U}_{\mathrm{sys}}=\mathbf{U}_{\mathrm{m} 2} \mathbf{U}_{\mathrm{s}} \mathbf{U}_{\mathrm{F}} \mathbf{U}_{\mathrm{m} 1} \tag{10}
\end{equation*}
$$

or

$$
\text { Usys }=\left[\begin{array}{ccc}
\frac{m_{1} s^{2}}{k_{2}}+1 & \frac{1}{k} & -\frac{F}{k} \tag{11}\\
m_{2} s^{2}\left(\frac{m_{1} s^{2}}{k}+1\right)+m_{1} s^{2} & \frac{m_{2} s^{2}}{k}+1 & -\frac{m_{2} s^{2} F}{k}-F \\
0 & 0 & 1
\end{array}\right]
$$

and equation (4) can be rewritten as

$$
\begin{equation*}
\mathbf{z}_{\mathrm{end}}=\mathbf{U}_{\mathrm{sys}} \mathbf{z}_{\mathrm{start}} \tag{12}
\end{equation*}
$$

or

$$
\left[\begin{array}{c}
x_{2} \tag{13}\\
0 \\
1
\end{array}\right]=\text { Usys } \cdot\left[\begin{array}{c}
x_{1} \\
0 \\
1
\end{array}\right]
$$

The second row of this equations gives

$$
\begin{equation*}
0=-\frac{m_{2} s^{2} F}{k}-F+\left(m_{2} s^{2}\left(\frac{m_{1} s^{2}}{k}+1\right)+m_{1} s^{2}\right) x_{1} \tag{14}
\end{equation*}
$$

which can be solved for the open-loop transfer function

$$
\begin{equation*}
t f 1_{T} M M=\frac{x_{1}}{F}=\frac{m_{2} s^{2}+k}{m_{1} m_{2} s^{4}+\left(k m_{2}+k m_{1}\right) s^{2}} \tag{15}
\end{equation*}
$$

Solving equation (15) for x_{1} and substituting the result into equation (13), allows the transfer function x_{2} / F to be found:

$$
\begin{equation*}
t f 2_{T} M M=\frac{k}{m_{1} m_{2} s^{4}+\left(k m_{2}+k m_{1}\right) s^{2}} \tag{16}
\end{equation*}
$$

1.1 Closed-Loop Analysis

1.1.1 Collocated Feedback

Proportional, collocated feeback control would take the form

$$
\begin{equation*}
F=g\left(u-x_{1}\right) \tag{17}
\end{equation*}
$$

A transfer matrix model of the collocated feedback control would require the transfer matrix

$$
U c l 1=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{18}\\
g & 1 & -g u \\
0 & 0 & 1
\end{array}\right]
$$

and the system model would become

$$
\text { Usyscl }=\left[\begin{array}{ccc}
\mathbf{z}_{\mathrm{end}}=\mathbf{U}_{\mathrm{m} 2} \mathbf{U}_{\mathrm{s}} \mathbf{U}_{\mathrm{cl} 1} \mathbf{U}_{\mathrm{m} 1} \mathbf{z}_{\mathrm{start}} \\
m_{2} s^{2}\left(\frac{m_{1} s^{2}+g}{k}+1\right. & \frac{1}{k} & -\frac{g u}{k} \tag{20}\\
k & s^{2}+g \\
0 & \frac{m_{2} s^{2}}{k}+1 & -\frac{g m_{2} s^{2} u}{k}-g u \\
0 & 1
\end{array}\right]
$$

The second row of this equations gives

$$
\begin{equation*}
0=\left(m_{2} s^{2}\left(\frac{m_{1} s^{2}+g}{k}+1\right)+m_{1} s^{2}+g\right) x_{1}-\frac{g m_{2} s^{2} u}{k}-g u \tag{21}
\end{equation*}
$$

which can be solved for the closed-loop transfer function

$$
\begin{equation*}
t f 1 c l_{T} M M=\frac{x_{1}}{u}=\frac{g m_{2} s^{2}+g k}{m_{1} m_{2} s^{4}+\left((k+g) m_{2}+k m_{1}\right) s^{2}+g k} \tag{22}
\end{equation*}
$$

2 Classical Analysis

The equation of motion for mass 1 is

$$
\begin{equation*}
m_{1} s^{2} x_{1}=F-k\left(x_{1}-x_{2}\right) \tag{23}
\end{equation*}
$$

and for mass 2

$$
\begin{equation*}
m_{2} s^{2} x_{2}=k\left(x_{1}-x_{2}\right) \tag{24}
\end{equation*}
$$

Equations (23) and (24) can be solved for the transfer functions

$$
\begin{equation*}
t f 1=\frac{m_{2} s^{2}+k}{m_{1} m_{2} s^{4}+\left(k m_{2}+k m_{1}\right) s^{2}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
t f 2=\frac{k}{m_{1} m_{2} s^{4}+\left(k m_{2}+k m_{1}\right) s^{2}} \tag{26}
\end{equation*}
$$

2.1 Collocated Feedback

For collocated feedback

$$
\begin{equation*}
t f 1 c l=\frac{x_{1}}{u}=\frac{g m_{2} s^{2}+g k}{m_{1} m_{2} s^{4}+\left((k+g) m_{2}+k m_{1}\right) s^{2}+g k} \tag{27}
\end{equation*}
$$

