Hi Ryan,
Ondrej Certik wrote:
On Thu, Jul 31, 2008 at 10:29 PM, Ryan Krauss <ryan...@gmail.com> wrote:
And we can modify the symbols and terms to be whatever we want. I was mainly trying to follow the conventions of the book by Cook et.al. that I am using.
robert should say what he likes. My background is in theoretical physics, so I am used to using different kind of symbols.
I will print it and go through it during this weekend, ok?
On the first glance it looks ok. It uses one of the engineering notations (matrices denoted by [], vectors by {}, right?).
I would prefer the notation used in doc/sfepy_manual.pdf, both indicial and tensor are ok.
For example, the first term in your (1) would look like:
continous:
1/2 \int E_{ijkl} \varepsilon_{ij} \varepsilon_{kl} or 1/2 \int E_(4) : \ull{\varepsilon} \ull{\varepsilon} here \ull is a shortcut for double underline (denoting a second-order tensor) and (4) denotes a fourth-order tensor (4 underlines are ugly)
discretized: 1/2 \bm{u}^T \bm{K} \bm{u} (u = displacements)
\bm{K} is global stiffness matrix, \bm{K}|_e contribution of element e
(4) would be: \ul{u} \approx \bm{\varphi} \bm{u} \nabla \ul{u} \approx \bm{G} \bm{u}, i.e. G denotes \nabla \varphi (gradients of the FE base funtions)
Anyway, it looks fine as it is, I have proposed the above just in case you have enough time...
Some figure would be nice, though.
cheers, r.
ps: an interesting link I have just found: http://www.sv.vt.edu/classes/ESM4714/methods/EEG.html