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1. Abstract
We consider the acoustic transmission through perforated interface separating two halfspaces occupied by
the acoustic medium. Recently the homogenized transmission conditions were obtained as the two-scale
homogenization limit of the standard acoustic problem imposed in the layer perforated by a sieve-like
obstacle with periodic structure. The limit model involves homogenized impedance coefficients depending
on the so-called microscopic problems; these are imposed in the reference computational cell, Y embed-
ding obstacle S the shape of which can be designed. We focus on the sensitivity of the homogenized
coefficients w.r.t. shape modification of the perforation represented by S; sensitivity formulas are re-
ported and illustrated by numerical examples. This research will contribute to the complex tasks, such
as minimization of the transmission loss computed in a domain embedding this perforated interface.
2. Keywords: linear acoustics, homogenization, transmission condition, sensitivity analysis

3. Introduction
Minimization of noise produced by flowing acoustic medium (inviscid compressible fluid) belongs to
important challenges of the aerospace and automotive engineering. For example, in the exhaust silencers
of the combustion engines the gas flows through ducts equipped with various sieve-like structures which in
part may influence the transmission losses associated with acoustic waves propagating in the exhaust gas.
Apart from optimization of the exhaust silencers, obviously there are other devices involving sieve-like
structures for which the acoustic transmission is an important figure to look at.

We have in mind an optimal design problem aimed at minimization of a cost functional which depends
on the overall acoustic pressure field; this field is the solution of the acoustic problem imposed in a
domain subdivided into two parts by the perforated thin (but rigid) structure, which is represented
by the corresponding mid-surface Γ0. The transmission condition on the mid-surface is presented in
an implicit form by the system of the surface-wave equation constrained by pressure jump of the two
pressure field traces. The transmission condition involves two interface variables: the surface acoustic
pressure and the transversal acoustic momentum; the latter couples the acoustic pressure fields in both
the domains in the form of the Neumann condition.

The transmission condition (imposed on the interface planar mid-surface) was recently derived using
the asymptotic analysis. In the homogenized form, the perforated thin structure, having possibly quite
complex form of the perforation, is represented by some homogenized impedance coefficients depending
on the so-called microscopic problems; they are solved in the reference computational cell Y embedding
obstacle S the shape of which can be designed.

Acoustic response to the global acoustic problem involving the transmission conditions is subject to
the sensitivity analysis. Namely the total variation of the transmission loss w.r.t. shape of S at the
“microlevel” is derived. By virtue of the state problem hierarchical structure the complex sensitivity can
be developed at three levels: 1) shape sensitivity of the homogenized coefficient at the microscopic level;
2) “material” sensitivity (w.r.t. perturbation of the homogenized coefficients) of the interface variables
associated with interface wave equation; 3) sensitivity associated with control problem: to optimize the
overall pressure field distribution using the interface variables variation. The sensitivity of the “upper
level” problem, i.e. 2) and 3), requires solving an adjoint equation; this issue has been addressed in
[5]. Here we deal with the sensitivity for the “lower level“ problem which associates the microstructure
geometry, i.e. the perforation design, with the effective (homogenized) transmission coefficients of the
upper level problem.
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Figure 1: Acoustic domain Ω divided by perforated plane Γ0.

We consider the acoustic medium occupying domain Ω which is subdivided by perforated plane Γ0 in
two disjoint subdomains Ω+ and Ω−, so that Ω = Ω+ ∪ Ω− ∪ Γ0, see Fig. 1. In a case of no convection
flow (the linear acoustics), the acoustic waves in Ω are described by the following equations

c2∇2p+ ω2p = 0 in Ω+ ∪ Ω− ,

transmission conditions
{
c2 ∂p
∂n+ = iωg0

c2 ∂p
∂n− = −iωg0

on Γ0 ,

boundary conditions on ∂Ω .

(1)

where ∂p
∂n± = n± · ∇p are the normal derivatives on Γ0 w.r.t. normals outward to Ω+ and Ω−, re-

spectively. The transmission conditions on interface Γ0 involve the transversal acoustic momentum g0;
this variable satisfies additional integral identities the were developed in [7] using the asymptotic analysis.
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Figure 2: Left: design velocity field is supported in Y ∗, boundary ∂S is shaped by design parameters.
Right: Domain perturbation using (10); parameter t corresponds to τ used in the text.

4. Optimal perforation design problem
In this section we shall formulate problem of optimal shape of the periodic perforations targeted to
maximize the transmission loss measured in an acoustic device which is equipped with the perforated
interface. The state problem has a hierarchical structure incorporating two levels. In this paper we
focus on the lower level which associates the perforation geometry with the homogenized coefficients of
the transmission conditions. They are introduced below using so called corrector functions defined in
the reference periodic cell Y =]0, 1[2×] − 1/2,+1/2[, Y ⊂ IR3. The acoustic medium occupies domain
Y ∗ = Y \ S, where S ⊂ Y is the solid (rigid) obstacle, see Fig. 2. For clarity we use notation Iy =]0, 1[2.
The upper and lower boundaries are translations of (Iy, 0); we define I+

y = {y ∈ ∂Y : z = 1/2}
and I−y = {y ∈ ∂Y : z = −1/2}. By H1

#(1,2)(Y ) we denote the space of H1(Y ) functions which are
“1-periodic” in coordinates yα, α = 1, 2; such functions will be called “transversely Y-periodic”.

4.1 Upper level state problem
Let p be the acoustic pressure in Ω = Ω+ ∪Ω− ∪ Γ0 and p+, p− be traces of p|+, p|− on Γ0, respectively,
where p|± are restrictions of p on Ω±. Thus, the acoustic pressure is discontinuous across Γ0; we shall
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need the space
H1(Ω \ Γ0) = L2(Ω) ∩

(
H1(Ω+) ∪H1(Ω−)

)
.

The upper level state problem is to find p ∈ H1(Ω\Γ0) and the interface related functions p0 ∈ H1(Γ0)
and g0 ∈ L2(Γ0) such that for a given p̄ ∈ L2(Γin) the following holds:

aΩ (p, q)− ω2 (p, q)Ω + ωc 〈p, q〉Γin−out
− iω

〈
g0, q+

〉
Γ0

+ iω
〈
g0, q−

〉
Γ0

= 2iωc 〈p̄, q〉Γin
(2)

for all q ∈ H1(Ω \ Γ0), and

A(p0, φ)− ω2ς∗
〈
p0, φ

〉
Γ0

+ iωB(g0, φ) = 0 , ∀φ ∈ H1(Γ0) ,

−iωκ0B(ψ, p0) + ω2F(g0, ψ) = −iω
1
ε0

〈
p+ − p−, ψ

〉
Γ0

, ∀ψ ∈ L2(Γ0) ,
(3)

where ς∗ = |Y ∗|/|Y | is related to porosity of the perforation, κ0 = κ/|Iy| is the dilatation parameter
(≈ 1, see [7]), the bilinear forms involved in (2) are, as follows

aΩ (p, q) =
∫

Ω

c2∇p · ∇q ,

(p, q)Ω =
∫

Ω

pq ,

〈p, q〉Γ =
∫

Γ

pq dΓ,

(4)

and the bilinear forms involved in (3) are defined in terms of the homogenized coefficients Aαβ , Bα and
F , (α = 1, 2 for 3D problems) which will be defined in the next paragraph:

A(p, q) =
∫

Γ0

Aαβ∂βp∂αq dΓ,

B(g, q) =
∫

Γ0

Bαg∂αq dΓ,

F(g, h) =
∫

Γ0

Fgh dΓ.

(5)

4.2 Microscopic problems
The homogenized coefficients, A,B, F and, thereby, the bilinear forms A,B,F are determined by the
solution of the level 3 state problem constituted by the local corrector problems. To simplify the notation,
we introduce

∇̂q = (∂yαq,κ−1∂zq),

a∗Y (π, ξ) =
∫
Y ∗
∇̂π · ∇̂ξ =

∫
Y ∗

(
∂yαπ∂

y
αξ +

1
κ2
∂zπ∂zξ

)
,

γ±(ξ) =
∫
I+y

ξ −
∫
I−y

ξ

(6)

and rewrite the local corrector problems as follows: Find πβ , ξ ∈ H1
#(1,2)(Y )/IR such that

a∗Y
(
πβ + yβ , φ

)
= 0 , ∀φ ∈ H1

#(1,2)(Y ), β = 1, 2 ,

a∗Y (ξ, φ) = − |Y |
κc2

γ±(φ) , ∀φ ∈ H1
#(1,2)(Y ).

(7)

Using the notation just introduced, the homogenized coefficients can be expressed, as follows:

Aαβ =
c2

|Y |
a∗Y
(
πβ + yβ , πα + yα

)
,

Bα =
c2

|Y |
a∗Y (ξ, yα) ,

F =
1
|Iy|

γ±(ξ) .

(8)
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We can now define the optimal perforation design problem:

min
α∈Dadm

Φ(p)

subject to: p solves (2)-(3),
where A,B, F are given by (7)-(8).

(9)

Dadm is the set of admissible designs; besides shape smoothness requirements it should reflect some
constraints concerning the size of the obstacle (thickness) and porosity of the interface.

5. Shape sensitivity analysis at the lower level
We shall present general sensitivity formulas for the homogenized coefficients A,B, F .

5.1 Elements of material and shape derivatives
We are interested in variation of the shape of the obstacle S placed in the domain, Y , thereby in variation
of Y ∗ ⊂ Y . On introducing the velocity field ~V in Y we parameterize the material points constituting
the domain Y by

zi(y, τ) = yi + τVi(y) , y ∈ Y , i = 1, 2 , (10)

where τ is the “time-like” variable, see Fig. 2; for all details on the concept of shape and material
derivatives we refer to [4] and [3]. Throughout the text below we shall use the notion of the following
derivatives:

δ(·) . . . total (material) derivative
δτ (·) . . . partial (local) derivative w.r.t. τ .

The derivatives just introduced are computed as the directional derivatives in the direction of ~V(y), y ∈ Y ;
for reader’s convenience we recall the definitions of both the material and local derivatives, as considered
e.g. in [3]. Let f(y) be a smooth function, e.g. f ∈ C1(Z), where Z ⊃ Y is such that for τ small enough
zi(y, τ) ∈ Z for any y ∈ Y . We assume that f depends on the actual shape of Y which is perturbed by
the velocity field ~V, as introduced in (10). Therefore, by f̃(z, τ) we denote the function value evaluated
at z = z(τ) and associated with the perturbed design Ỹ (τ) = {z| z(y, τ) = y + τV(y) , y ∈ Y }. Due to
mapping (10) one can trace the ”motion” of a selected material point. The material derivative reflects
the change of the function value in the material point which is convected with velocity V:

δf(y) ◦ V ≡ lim
τ→0+

f̃(z(y, τ), τ)− f(y)
τ

= lim
τ→0+

f̃(z(y, τ), τ)− f̃(y, τ)
τ

+ lim
τ→0+

f̃(y, τ)− f(y)
τ

= δτf(y) ◦ V +∇f(y) · V(y) ,

(11)

where the partial derivative is defined by

δτf(y) ◦ V = lim
τ→0+

f̃(y, τ)− f(y)
τ

, (12)

so that it corresponds to the local change in f evaluated at fixed position y ∈ Y .
Once the shap variation δ∂S is defined, velocities V can be established in Y ∗ by various methods;

very often an auxiliary elasticity problem is solved in Y ∗.

5.2 Shape sensitivity of the homogenized transmission coefficients
Through the following text, for simplicity of the notation, we shall write just δτ (·) and δ(·) instead of
δτ (·) ◦ V and δ(·) ◦ V, respectively, to refer to the directional derivatives (11)-(12).

We shall derive sensitivity formulae for computing the shape derivatives of the homogenized coefficients
defined in (8). For this we need to differentiate the local equations (7); thus, we obtain

δτa
∗
Y (πα, φ) ◦ V + a∗Y (δπα ◦ V + Vα, φ) = 0 ,

δτa
∗
Y (ξ, φ) ◦ V + a∗Y (δξ ◦ V, φ) = 0 ,

(13)
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for all φ ∈ H1
#(1,2)(Y ), where

δτa
∗
Y (φ, ψ) ◦ V =

∫
Y ∗

[
divV∇̂φ · ∇̂ψ − (∇̂V · ∇φ) · ∇̂ψ − ∇̂φ · (∇̂V · ∇ψ)

]
=
∫
Y ∗

[
divV∇̂φ · ∇̂ψ − ∂αVk∂kφ∂αψ − ∂αφ∂αVl∂lψ

− 1
κ2
∂zVk∂kφ∂zψ −

1
κ2
∂zφ∂zVl∂lψ

]
.

(14)

This expression is derived by virtue of the definition in (11),

δτa
∗
Y (π, φ) = lim

τ→0
τ−1

[
a∗
Ỹ (τ)

(π, φ)− a∗Y (π, φ)
]

where a∗
Ỹ (τ)

(π, φ) =
∫
Y ∗

[
∂yk
∂zα

∂π

∂yk

∂yl
∂zα

∂φ

∂yl
+

1
κ2

∂yk
∂z3

∂π

∂yk

∂yl
∂z3

∂φ

∂yl

]
J(z) .

On differentiating (8) we obtain the sensitivity of Aαβ :

δAαβ ◦ V =
c2

|Y |
[
δτa
∗
Y

(
πβ + yβ , π

α + yα
)
◦ V + a∗Y (Vβ , πα + yα) + a∗Y

(
πβ + yβ , Vα

)]
(15)

where the following identity was employed a∗Y
(
πβ + yβ , δπ

α
)

= 0. From this and using (13)2 one obtains

a∗Y (δξ, yβ) = −a∗Y
(
δξ, πβ

)
= δτa

∗
Y

(
ξ, πβ

)
, (16)

which is used to simplify the sensitivity of Bα:

δBα ◦ V =
c2

|Y |
[a∗Y (δξ ◦ V, yα) + a∗Y (ξ, Vα) + δτa

∗
Y (ξ, yα) ◦ V]

=
c2

|Y |
[δτa∗Y (ξ, πα + yα) ◦ V + a∗Y (ξ, Vα)] .

(17)

In order to derive the sensitivity of F , we apply subsequently (7)2 with φ = δξ and (13)2, thus

δF ◦ V =
1
|Iy|

γ±(δξ) ◦ V = − κc2

|Iy||Y |
a∗Y (ξ, δξ) ◦ V =

κc2

|Iy||Y |
δτa
∗
Y (ξ, ξ) ◦ V . (18)

6. Numerical examples
This section presents some illustrative numerical examples of acoustic transmission showing influence of
the perforation design. Examples were computed using our code based on Python language (“Sfepy”
project, [2]).

6.1 Various perforations in 3D
In Fig. 3, we compare the corrector functions ξ±, π and homogenized parameters A, B, F of three differ-
ent perforations in 3D. Due to the geometrical arrangement of the solid obstacles the coupling coefficients
B, D vanish for perforation types 3D/#1 and 3D/#2. For type 3D/#3 these coefficients are nonzero,
i.e. the transversal and tangential velocities in the interface layer are coupled.

6.2 Sensitivity of the homogenized coefficients
The shape sensitivity of the homogenized transmission coefficients was tested in 2D with the simple ge-
ometry of the periodic perforation. In Fig. 4 we tested the sensitivity with respect to rotation of the solid
rectangular obstacle. The sensitivity coefficients δA, δB and δF are shown for unrotated and rotated
solid obstacle.
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7. Conclusion

The “multi-scale” homogenization approach was employed and envisaged for an efficient treatment of
the optimal perforation design. The model and its sensitivity discussed in this paper are implemented in
our in-house developed finite element based code SfePy ([2]). In [7], using the asymptotic analysis, we
developed the homogenized transmission conditions to be imposed on an interface plane representing the
periodic perforation which, in reality, is featured by possibly complicated shapes of the obstacles forming
the perforation. The further step in our research will be focused on solving an optimal perforation design
problem to maximize the transmission loss.

8. Acknowledgments
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Mic. 3D/#1 Mic. 3D/#2 Mic. 3D/#3

Geometry

ξ±

π1

π2

A [(m/s)2]
[
98415.75 0.0

0.0 98415.75

] [
98654.50 207.83
207.83 98155.32

] [
75295.34 0.0

0.0 81814.05

]
B [m]

[
0.0 0.0

] [
0.0 0.0

] [
0.142330 0.142330

]
F [s2] 1.754429× 10−5 1.647584× 10−5 2.838839× 10−5

Figure 3: Distribution of the characteristic functions ξ±, π1 and π2 in the microscopic domain Y ∗ and
the homogenized acoustic coefficients for three shapes of 3D perforations.
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No rotation Rotated inclusion – ϕ = π/10

Design velocity field V
A [(m/s)2] 99553.7109 96517.4395
δA −335.5750 −18055.5925
B [m] 0.0 0.0928
δB 0.3338 0.2225
F [s2] 1.3094× 10−5 1.2511× 10−5

δF −6.4800 · 10−8 −3.3897 · 10−6

Figure 4: The shape sensitivity of the homogenized transmission coefficients A, B and F with respect to
rotation of the embedded solid obstacle.
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