Hello Robert,
 I am trying to simulate a rectangular block with the fixed bottom and loaded at the top by an area force. 

I have following doubts. Please clarify
1.How to consider the area force.
2.Which elastic equation should I use? I am not finding any equation for area loads.
3.I'm sharing my problem description file. Kindly look into it and help me understand. I am very new to SfePy.

from sfepy.mechanics.matcoefs import lame_from_youngpoisson

from sfepy.discrete.fem.utils import refine_mesh

from sfepy import data_dir


# Tell SfePy to use our .mesh file

filename_mesh = data_dir + '/meshes/3d/block.mesh'


# Tell SfePy where u want to save the output

output_dir = '.'


# Material parameters.

young = 200000.0 # Young's modulus [MPa]

poisson = 0.26 # Poisson's ratio


options = {

'output_dir' : output_dir,

}


#Regions are used to define the boundary conditions, the domains of terms and materials etc.

regions = {

'Omega' : 'all',

'Bottom' : ('vertices in (y=0)', 'facet'),

'Top':('vertices in (y=1)', 'facet'),

}


#Define constitutive parameters (e.g. stiffness, permeability, or viscosity),

#Also other non-field arguments of terms (e.g. known traction or volume forces).

materials = {

'Steel' : ({

'lam' : lame_from_youngpoisson(young, poisson)[0],

'mu' : lame_from_youngpoisson(young, poisson)[1],

},),

'Load' : ({'.val' : [0.0, -5.0,0.0]},),

}


#FE field.Here 'real' is datatype,'3' is dof per node, field is defined over omega & '1' is approximation order

fields = {

'displacement': ('real', '3', 'Omega', 1),

}


#Here we use linear elastic spring equation

equations = {

'balance_of_forces' :

"""dw_lin_elastic_iso.2.Omega(Steel.lam, Steel.mu, v, u )

= dw_point_load.0.Top(Load.val, v)""",

}


# Specify the variables that use the FE approximation given by the specified field

variables = {

'u' : ('unknown field', 'displacement', 0),

'v' : ('test field', 'displacement', 'u'),

}


#Since the bottom is fixed corresponding nodal displacement are zero

ebcs = {

'Fixed' : ('Bottom', {'u.all' : 0.0}),

}


#In SfePy, a non-linear solver has to be specified even when solving a linear problem.

#The linear problem is/should be then solved in one iteration of the nonlinear solver

solvers = {

'ls' : ('ls.scipy_direct', {}),

'newton' : ('nls.newton', {

'i_max' : 1,# Number of iterations

'eps_a' : 1e-6,

}),

}

  Thanks in advance,
Nayan M