
Common Gotchas

Hephzibah Pon Cellat Arulprakash

@chennaipy



Table of contents

• Mutable Default Arguments

• Late Binding Closures

• List Copy

• Local Variable



Mutable Default Arguments

Code

def append_to(element, to=[]):
to.append(element)
return to

my_list = append_to(12)
print(my_list)

my_other_list = append_to(42)
print(my_other_list)



Mutable Default Arguments

What You Might Have Expected to Happen

A new list is created each time the function is called if a second argument isn’t provided, so 
that the output is:

my_list = append_to(12)
print(my_list)

my_other_list = append_to(42)
print(my_other_list)

[12]
[42]



Mutable Default Arguments

What actually happens

A new list is created once when the function is defined, and the same list is used in each 
successive call.

[12]
[12, 42]



Mutable Default Arguments

What actually happens

Python’s default arguments are evaluated once when the function is defined, not each time 
the function is called (like it is in say, Ruby). This means that if you use a mutable default 
argument and mutate it, you will and have mutated that object for all future calls to the 
function as well.

[12]
[12, 42]



Mutable Default Arguments

What you should do instead

Create a new object each time the function is called, by using a default arg to signal that no 
argument was provided (None is often a good choice).

def append_to(element, to=None):
if to is None:

to = []
to.append(element)
return to



Late Binding Closures

Code

def create_multipliers():
return [lambda x : i * x for i in range(5)]

for multiplier in create_multipliers():
print(multiplier(2))



Late Binding Closures

What You Might Have Expected to Happen

• A list containing five functions

• That each have their own closed-over i variable that multiplies their argument, producing:

0
2
4
6
8



Late Binding Closures

What actually happens

• Five functions are created;

• instead all of them just multiply x by 4

8
8
8
8
8



Late Binding Closures

What you should do instead

you can create a closure that binds immediately to its arguments by using a default arg like 
so:

def create_multipliers():
return [lambda x, i=i : i * x for i in range(5)]



List copy

Code

array1 = [1, 2, 3, 4, 5]

array2 = array1
array2[0] = 10

print(array1)
print(array2)



List copy

What You Might Have Expected to Happen

• Array1 has values 1, 2, 3, 4, 5

• Array2 is created with same values as like array1

• Array2 first element is modified to 10

• Array1 values are not changed

[1, 2, 3, 4, 5]
[10, 2, 3, 4, 5]



List copy

What actually happens

• Variables are simply names that refer to objects.

• Doing array2=array1 doesn’t create a copy of the list

• It creates a new variable array2 that refers to the same object array1 refers to.

• This means that there is only one object (the list), and both array1 and array2 refer to it.

• Lists are mutable, which means that you can change their content.

[10, 2, 3, 4, 5]
[10, 2, 3, 4, 5]



List copy

What you should do instead

array2 = array1.copy()

or 

array2 = array1[:]

or

array2 = list(array1)



Local Variable

Code

x = 10

def foo():
print(x)

foo()

x = 10

def foo():
x += 1
print(x)

foo()



Local Variable

What You Might Have Expected to Happen

• First code snippet prints x value 10

• Second code snippet should be x = x+1 and print 11

10 11



Local Variable

What actually happens

• when you make an assignment to a variable in a scope, that variable becomes local to 
that scope and shadows any similarly named variable in the outer scope.

• Since the first statement in foo assigns a new value to x, the compiler recognizes it as a 
local variable.

• Consequently when the next statement print(x) attempts to print the uninitialized local 
variable and an error results.

10
UnboundLocalError: local variable 
'x' referenced before assignment



Local Variable

What you should do instead

x = 10

def foo():
global x
x += 1
print(x)

foo()



References

• https://docs.python-guide.org/writing/gotchas/

• https://docs.python.org/3/faq/programming.html#why-did-
changing-list-y-also-change-list-x

• https://stackoverflow.com/questions/2612802/how-do-i-clone-a-
list-so-that-it-doesnt-change-unexpectedly-after-assignment

• https://docs.python.org/3/faq/programming.html#why-am-i-
getting-an-unboundlocalerror-when-the-variable-has-a-value

• https://realpython.com/python-scope-legb-rule/

https://docs.python-guide.org/writing/gotchas/
https://docs.python.org/3/faq/programming.html#why-did-changing-list-y-also-change-list-x
https://stackoverflow.com/questions/2612802/how-do-i-clone-a-list-so-that-it-doesnt-change-unexpectedly-after-assignment
https://docs.python.org/3/faq/programming.html#why-am-i-getting-an-unboundlocalerror-when-the-variable-has-a-value
https://realpython.com/python-scope-legb-rule/

