[Numpy-discussion] numpy ufuncs and COREPY - any info?
Gregor Thalhammer
gregor.thalhammer at gmail.com
Fri May 22 05:42:56 EDT 2009
dmitrey schrieb:
> hi all,
> has anyone already tried to compare using an ordinary numpy ufunc vs
> that one from corepy, first of all I mean the project
> http://socghop.appspot.com/student_project/show/google/gsoc2009/python/t124024628235
>
> It would be interesting to know what is speedup for (eg) vec ** 0.5 or
> (if it's possible - it isn't pure ufunc) numpy.dot(Matrix, vec). Or
> any another example.
>
I have no experience with the mentioned CorePy, but recently I was
playing around with accelerated ufuncs using Intels Math Kernel Library
(MKL). These improvements are now part of the numexpr package
http://code.google.com/p/numexpr/
Some remarks on possible speed improvements on recent Intel x86 processors.
1) basic arithmetic ufuncs (add, sub, mul, ...) in standard numpy are
fast (SSE is used) and speed is limited by memory bandwidth.
2) the speed of many transcendental functions (exp, sin, cos, pow, ...)
can be improved by _roughly_ a factor of five (single core) by using the
MKL. Most of the improvements stem from using faster algorithms with a
vectorized implementation. Note: the speed improvement depends on a
_lot_ of other circumstances.
3) Improving performance by using multi cores is much more difficult.
Only for sufficiently large (>1e5) arrays a significant speedup is
possible. Where a speed gain is possible, the MKL uses several cores.
Some experimentation showed that adding a few OpenMP constructs you
could get a similar speedup with numpy.
4) numpy.dot uses optimized implementations.
Gregor
More information about the NumPy-Discussion
mailing list