[Numpy-discussion] Numexpr giving randomized results on arrays larger than 2047 elements
John Salvatier
jsalvati at u.washington.edu
Mon Jan 24 14:13:43 EST 2011
Looks like this is related to issue 41 (
http://code.google.com/p/numexpr/issues/detail?id=41&can=1).
On Mon, Jan 24, 2011 at 10:29 AM, John Salvatier
<jsalvati at u.washington.edu>wrote:
> I also get the same issue with prod()
>
>
> On Mon, Jan 24, 2011 at 10:23 AM, Warren Weckesser <
> warren.weckesser at enthought.com> wrote:
>
>> I see the same "randomness", but at a different array size:
>>
>> In [23]: numpy.__version__
>> Out[23]: '1.4.0'
>>
>> In [24]: import numexpr
>>
>> In [25]: numexpr.__version__
>> Out[25]: '1.4.1'
>>
>> In [26]: x = zeros(8192)+0.01
>>
>> In [27]: print evaluate('sum(x, axis=0)')
>> 72.97
>>
>> In [28]: print evaluate('sum(x, axis=0)')
>> 66.92
>>
>> In [29]: print evaluate('sum(x, axis=0)')
>> 67.9
>>
>> In [30]: x = zeros(8193)+0.01
>>
>> In [31]: print evaluate('sum(x, axis=0)')
>> 72.63
>>
>> In [32]: print evaluate('sum(x, axis=0)')
>> 71.74
>>
>> In [33]: print evaluate('sum(x, axis=0)')
>> 81.93
>>
>> In [34]: x = zeros(8191)+0.01
>>
>> In [35]: print evaluate('sum(x, axis=0)')
>> 81.91
>>
>> In [36]: print evaluate('sum(x, axis=0)')
>> 81.91
>>
>>
>> Warren
>>
>>
>>
>> On Mon, Jan 24, 2011 at 12:19 PM, John Salvatier <
>> jsalvati at u.washington.edu> wrote:
>>
>>> Forgot to mention that I am using numexpr 1.4.1 and numpy 1.5.1
>>>
>>>
>>> On Mon, Jan 24, 2011 at 9:47 AM, John Salvatier <
>>> jsalvati at u.washington.edu> wrote:
>>>
>>>> Hello,
>>>>
>>>> I have discovered a strange bug with numexpr. numexpr.evaluate gives
>>>> randomized results on arrays larger than 2047 elements. The following
>>>> program demonstrates this:
>>>>
>>>> from numpy import *
>>>> from numexpr import evaluate
>>>>
>>>> def func(x):
>>>>
>>>> return evaluate("sum(x, axis = 0)")
>>>>
>>>>
>>>> x = zeros(2048)+.01
>>>>
>>>> print evaluate("sum(x, axis = 0)")
>>>> print evaluate("sum(x, axis = 0)")
>>>>
>>>> For me this prints different results each time, for example:
>>>>
>>>> 11.67
>>>> 14.84
>>>>
>>>> If we set the size to 2047 I get consistent results.
>>>>
>>>> 20.47
>>>> 20.47
>>>>
>>>> Interestingly, if I do not add .01 to x, it consistently sums to 0.
>>>
>>>
>>>
>>> _______________________________________________
>>> NumPy-Discussion mailing list
>>> NumPy-Discussion at scipy.org
>>> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>>>
>>>
>>
>> _______________________________________________
>> NumPy-Discussion mailing list
>> NumPy-Discussion at scipy.org
>> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>>
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/numpy-discussion/attachments/20110124/7c5724a1/attachment.html>
More information about the NumPy-Discussion
mailing list