[Numpy-discussion] tests for casting table? (was: Numpy 1.7b1 API change cause big trouble)

Travis Oliphant travis at continuum.io
Thu Sep 20 16:20:22 EDT 2012

Here are a couple of scripts that might help (I used them to compare casting tables between various versions of NumPy): 

Casting Table Creation Script
import numpy as np

operators = np.set_numeric_ops().values()
types = '?bhilqpBHILQPfdgFDGO'
to_check = ['add', 'divide', 'minimum', 'maximum', 'remainder', 'true_divide', 'logical_or', 'bitwise_or', 'right_shift', 'less', 'equal']
operators = [op for op in operators if op.__name__ in to_check]

def type_wrap(op):
    def func(obj1, obj2):
            result = op(obj1, obj2)
            char = result.dtype.char
            char = 'X'
        return char

    return func

def coerce():
    result = {}
    for op in operators:
        d = {}
        name = op.__name__
        print name
        op = type_wrap(op)
        for type1 in types:
            s1 = np.dtype(type1).type(2)
            a1 = np.dtype(type1).type([1,2,3])
            for type2 in types:
                s2 = np.dtype(type2).type(1)
                a2 = np.dtype(type2).type([2,3,4])
                codes = []
                # scalar <op> scalar
                codes.append(op(s1, s2))
                # scalar <op> array
                codes.append(op(s1, a2))
                # array <op> scalar
                codes.append(op(a1, s2))
                # array <op> array
                codes.append(op(a1, a2))
                d[type1,type2] = codes                
        result[name] = d

        #for check_key in to_check:
        # for key in result.keys():
        #    if key == check_key:
        #        continue
        #    if result[key] == result[check_key]:
        #        del result[key]
        #assert set(result.keys()) == set(to_check)
    return result

import sys
if sys.maxint > 2**33:
    bits = 64
    bits = 32

def write():
    import cPickle
    file = open('coercion-%s-%sbit.pkl'%(np.__version__, bits),'w')

if __name__ == '__main__':

Comparison Script

import numpy as np

def compare(result1, result2):
    for op in result1.keys():
        print "**** ", op, " ****"
        if op not in result2:
            print op, " not in the first"
        table1 = result1[op]
        table2 = result2[op]
        if table1 == table2:
            print "Tables are the same"
            if set(table1.keys()) != set(table2.keys()):
                print "Keys are not the same"
            for key in table1.keys():
                if table1[key] != table2[key]:
                    print "Different at ", key, ": ", table1[key], table2[key]

import cPickle
import sys

if __name__ == '__main__':
    name1 = 'coercion-1.5.1-64bit.pkl'
    name2 = 'coercion-1.6.1-64bit.pkl'

    if len(sys.argv) > 1:
        name1 = 'coercion-%s-64bit.pkl' % sys.argv[1]
    if len(sys.argv) > 2:
        name2 = 'coercion-%s-64bit.pkl' % sys.argv[2]
    result1 = cPickle.load(open(name1))
    result2 = cPickle.load(open(name2))
    compare(result1, result2)

On Sep 20, 2012, at 3:09 PM, Nathaniel Smith wrote:

> On Mon, Sep 17, 2012 at 10:22 AM, Matthew Brett <matthew.brett at gmail.com> wrote:
>> Hi,
>> On Sun, Sep 9, 2012 at 6:12 PM, Frédéric Bastien <nouiz at nouiz.org> wrote:
>>> The third is releated to change to the casting rules in numpy. Before
>>> a scalar complex128 * vector float32 gived a vector of dtype
>>> complex128. Now it give a vector of complex64. The reason is that now
>>> the scalar of different category only change the category, not the
>>> precision. I would consider a must that we warn clearly about this
>>> interface change. Most people won't see it, but people that optimize
>>> there code heavily could depend on such thing.
>> It seems to me that it would be a very good idea to put the casting
>> table results into the tests to make sure we are keeping track of this
>> kind of thing.
>> I'm happy to try to do it if no-one else more qualified has time.
> I haven't seen any PRs show up from anyone else in the last few days,
> and this would indeed be an excellent test to have, so that would be
> awesome.
> -n
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion at scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion

More information about the NumPy-Discussion mailing list