[Numpy-discussion] ANN: Numpy 1.8.0 beta 1 release

Christoph Gohlke cgohlke at uci.edu
Tue Sep 3 20:24:00 EDT 2013


On 9/3/2013 4:52 PM, Charles R Harris wrote:
>
>
>
> On Tue, Sep 3, 2013 at 5:45 PM, Charles R Harris
> <charlesr.harris at gmail.com <mailto:charlesr.harris at gmail.com>> wrote:
>
>
>
>
>     On Tue, Sep 3, 2013 at 5:40 PM, Christoph Gohlke <cgohlke at uci.edu
>     <mailto:cgohlke at uci.edu>> wrote:
>
>         On 9/3/2013 2:51 PM, Charles R Harris wrote:
>         >
>         >
>         >
>         > On Tue, Sep 3, 2013 at 3:23 PM, Christoph Gohlke <cgohlke at uci.edu <mailto:cgohlke at uci.edu>
>         > <mailto:cgohlke at uci.edu <mailto:cgohlke at uci.edu>>> wrote:
>         >
>         >     On 9/1/2013 9:54 AM, Charles R Harris wrote:
>         >
>         >         Hi all,
>         >
>         >         I'm happy to announce the first beta release of Numpy 1.8.0.
>         >         Please try
>         >         this beta and report any issues on the numpy-dev mailing list.
>         >
>         >         Source tarballs and release notes can be found at
>         >https://sourceforge.net/__projects/numpy/files/NumPy/1.__8.0b1/
>         >         <https://sourceforge.net/projects/numpy/files/NumPy/1.8.0b1/>.
>         >         The Windows
>         >         and OS X installers will follow when the infrastructure issues
>         >         are dealt
>         >         with.
>         >
>         >         Chuck
>         >
>         >
>         >     Hello,
>         >
>         >     I tried numpy-1.8.0.dev-86a6e6c with msvc9 and MKL 11.1 on
>         >     win-amd64-py2.7. It builds OK but there are 23 test errors and 6
>         >     failures (attached).
>         >
>         >     Some 3rd party packages (e.g. scipy, numexpr, pytables, bottleneck,
>         >     pandas and matplotlib) that were built against numpy-MKL 1.7 fail
>         >     tests when used with numpy-MKL 1.8. Other packages test OK (e.g.
>         >     skimage, sklearn, statsmodels, mahotas, pygame). See
>         >     <http://www.lfd.uci.edu/~__gohlke/pythonlibs/tests/__20130902-win-amd64-py2.7-__numpy-1.8.0.dev-86a6e6c/
>         <http://www.lfd.uci.edu/%7E__gohlke/pythonlibs/tests/__20130902-win-amd64-py2.7-__numpy-1.8.0.dev-86a6e6c/>
>         >     <http://www.lfd.uci.edu/%7Egohlke/pythonlibs/tests/20130902-win-amd64-py2.7-numpy-1.8.0.dev-86a6e6c/>>
>         >     compared to
>         >     <http://www.lfd.uci.edu/~__gohlke/pythonlibs/tests/__20130902-win-amd64-py2.7/
>         <http://www.lfd.uci.edu/%7E__gohlke/pythonlibs/tests/__20130902-win-amd64-py2.7/>
>         >     <http://www.lfd.uci.edu/%7Egohlke/pythonlibs/tests/20130902-win-amd64-py2.7/>>.
>         >
>         >
>         >     I have not looked in more detail or at other Python versions yet.
>         >
>         >
>         > Thanks Christoph,
>         >
>         > Looks like some work to do. I wonder what is different between windows
>         > and linux here?
>         >
>         > Chuck
>         >
>
>         Looks like the fundamental PyArray_PyIntAsIntp function is
>         broken on 64
>         bit Windows. 64 bit PyLong values are intermediately stored in a
>         32 bit
>         C long variable. But maybe I am missing something...
>         <https://github.com/numpy/numpy/blob/maintenance/1.8.x/numpy/core/src/multiarray/conversion_utils.c#L729>
>         <https://github.com/numpy/numpy/blob/maintenance/1.8.x/numpy/core/src/multiarray/conversion_utils.c#L767>
>
>     My, that does look suspicious. That function is new in 1.8 I
>     believe. Looks like it needs fixing whatever else it fixes.
>
>
> BTW, do the tests pass with a 32 build?
>
> Chuck
>

The 32 bit build fails two tests (unrelated to the above 64 bit issue):

======================================================================
FAIL: test_invalid (test_errstate.TestErrstate)
----------------------------------------------------------------------
Traceback (most recent call last):
   File "X:\Python27\lib\site-packages\numpy\testing\decorators.py", 
line 146, in skipper_func
     return f(*args, **kwargs)
   File 
"X:\Python27\lib\site-packages\numpy\core\tests\test_errstate.py", line 
23, in test_invalid
     self.fail("Did not raise an invalid error")
AssertionError: Did not raise an invalid error

======================================================================
FAIL: simd tests on max/min
----------------------------------------------------------------------
Traceback (most recent call last):
   File "X:\Python27\lib\site-packages\numpy\core\tests\test_umath.py", 
line 678, in test_minmax_blocked
     msg=repr(inp) + '\n' + msg)
AssertionError: array([  0.,   1.,  nan,   3.,   4.,   5.,   6.,   7., 
  8.,   9.,  10.], dtype=float32)
unary offset=(0, 0), size=11, dtype=<type 'numpy.float32'>, out of place

----------------------------------------------------------------------

Christoph



More information about the NumPy-Discussion mailing list